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Preface
TensorFlow is an open source software library used to implement machine learning and
deep learning systems.

Behind these two names are hidden a series of powerful algorithms that share a common
challenge: to allow a computer to learn how to automatically recognize complex patterns
and make the smartest decisions possible.

Machine learning algorithms are supervised or unsupervised; simplifying as much as
possible, we can say that the biggest difference is that in supervised learning the
programmer instructs the computer how to do something, whereas in unsupervised
learning the computer will learn all by itself.

Deep learning is instead a new area of machine learning research that has been introduced
with the objective of moving machine learning closer to artificial intelligence goals.
This means that deep learning algorithms try to operate like the human brain.

With the aim of conducting research in these fascinating areas, the Google team developed
TensorFlow, which is the subject of this book.

To introduce TensorFlow’s programming features, we have used the Python programming
language. Python is fun and easy to use; it is a true general-purpose language and is quickly
becoming a must-have tool in the arsenal of any self-respecting programmer.

It is not the aim of this book to completely describe all TensorFlow objects and methods;
instead we will introduce the important system concepts and lead you up the learning
curve as fast and efficiently as we can. Each chapter of the book presents a different aspect
of TensorFlow, accompanied by several programming examples that reflect typical issues of
machine and deep learning.

Although it is large and complex, TensorFlow is designed to be easy to use once you learn
about its basic design and programming methodology.

The purpose of Getting Started with TensorFlow is to help you do just that.

Enjoy reading!
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What this book covers
Chapter 1, TensorFlow – Basic Concepts, contains general information on the structure of
TensorFlow and the issues for which it was developed. It also provides the basic
programming guidelines for the Python language and a first TensorFlow working session
after the installation procedure. The chapter ends with a description of TensorBoard, a
powerful tool for optimization and debugging.

Chapter 2, Doing Math with TensorFlow, describes the ability of mathematical processing of
TensorFlow. It covers programming examples on basic algebra up to partial differential
equations. Also, the basic data structure in TensorFlow, the tensor, is explained.

Chapter 3, Starting with Machine Learning, introduces some machine learning models. We
start to implement the linear regression algorithm, which is concerned with modeling
relationships between data. The main focus of the chapter is on solving two basic problems
in machine learning; classification, that is, how to assign each new input to one of the
possible given categories; and data clustering, which is the task of grouping a set of objects
in such a way that objects in the same group are more similar to each other than to those in
other groups.

Chapter 4, Introducing Neural Networks, provides a quick and detailed introduction of neural
networks. These are mathematical models that represent the interconnection between
elements, the artificial neurons. They are mathematical constructs that to some extent mimic
the properties of living neurons. Neural networks build the foundation on which rests the
architecture of deep learning algorithms. Two basic types of neural nets are then
implemented: the Single Layer Perceptron and the Multi Layer Perceptron for classification
problems.

Chapter 5, Deep Learning, gives an overview of deep learning algorithms. Only in recent
years has deep learning collected a large number of results considered unthinkable a few
years ago. We’ll show how to implement two fundamental deep learning architectures,
convolutional neural networks (CNN) and recurrent neural networks (RNN), for image
recognition and speech translation problems  respectively.

Chapter 6, GPU Programming and Serving with TensorFlow, shows the TensorFlow facilities for
GPU computing and introduces TensorFlow Serving, a high-performance open source
serving system for machine learning models designed for production environments and
optimized for TensorFlow.
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What you need for this book
All the examples have been implemented using Python version 2.7 on an Ubuntu Linux 64-
bit machine, including the TensorFlow library version 0.7.1.

You will also need the following Python modules (preferably the latest version):

Pip
Bazel
Matplotlib
NumPy
Pandas

Who this book is for
The reader should have a basic knowledge of programming and math concepts, and at the
same time, want to be introduced to the topics of machine and deep learning. After reading
this book, you will be able to master TensorFlow’s features to build powerful applications.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, path
names, dummy URLs, user input, and Twitter handles are shown as follows: "The
instructions for flow control are if, for, and while."

 

Any command-line input or output is written as follows:

>>> myvar = 3
>>> myvar += 2
>>> myvar
5
>>> myvar -= 1
>>> myvar
4
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New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The shortcuts in this book
are based on the Mac OS X 10.5+ scheme."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / G e t t i n g - S t a r t e d - w i t h - T e n s o r F l o w. We also have other code bundles from
our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n
g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s / d
o w n l o a d s / G e t t i n g S t a r t e d w i t h T e n s o r F l o w _ C o l o r I m a g e s . p d f.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

https://github.com/PacktPublishing/Getting-Started-with-TensorFlow
https://github.com/PacktPublishing/Getting-Started-with-TensorFlow
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/submit-errata
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To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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TensorFlow – Basic Concepts

In this chapter, we'll cover the following topics:

Machine learning and deep learning basics
TensorFlow – A general overview
Python basics
Installing TensorFlow
First working session
Data Flow Graph
TensorFlow programming model
How to use TensorBoard

Machine learning and deep learning basics
Machine learning is a branch of artificial intelligence, and more specifically of computer
science, which deals with the study of systems and algorithms that can learn from data,
synthesizing new knowledge from them.

The word learn intuitively suggests that a system based on machine learning, may, on the
basis of the observation of previously processed data, improve its knowledge in order to
achieve better results in the future, or provide output closer to the desired output for that
particular system.

The ability of a program or a system based on machine learning to improve its performance
in a particular task, thanks to past experience, is strongly linked to its ability to recognize
patterns in the data. This theme, called pattern recognition, is therefore of vital importance and
of increasing interest in the context of artificial intelligence; it is the basis of all machine
learning techniques.
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The training of a machine learning system can be done in different ways:

Supervised learning
Unsupervised learning

Supervised learning
Supervised learning is the most common form of machine learning. With supervised
learning, a set of examples, the training set, is submitted as input to the system during the
training phase, where each example is labeled with the respective desired output value. For
example, let's consider a classification problem, where the system must attribute some
experimental observations in one of the N different classes already known. In this problem,
the training set is presented as a sequence of pairs of the type {(X1, Y1), ....., (Xn,
Yn)} where Xi are the input vectors (feature vectors) and Yi represents the desired class for
the corresponding input vector. Most supervised learning algorithms share one
characteristic: the training is performed by the minimization of a particular loss function
(cost function), which represents the output error with respect to the desired output system.

The cost function most used for this type of training calculates the standard deviation
between the desired output and the one supplied by the system. After training, the accuracy
of the model is measured on a set of disjointed examples from the training set, the so-called
validation set.

Supervised learning workflow
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In this phase the model's generalization capability is then verified: we will test if the output is
correct for an unused input during the training phase.

Unsupervised learning
In unsupervised learning, the training examples provided by the system are not labeled with
the related belonging class. The system, therefore, develops and organizes the data, looking
for common characteristics among them, and changing them based on their internal
knowledge.

Unsupervised learning algorithms are particularly used in clustering problems, in which a
number of input examples are present, you do not know the class a priori, and you do not
even know what the possible classes are, or how numerous they are. This is a clear case
when you cannot use supervised learning, because you do not know a priori the number of
classes.

Unsupervised learning workflow
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Deep learning
Deep learning techniques represent a remarkable step forward taken by machine learning
in recent decades, having provided results never seen before in many applications, such as
image and speech recognition or Natural Language Processing (NLP). There are several
reasons that led to deep learning being developed and placed at the center of the field of
machine learning only in recent decades. One reason, perhaps the main one, is surely
represented by progress in hardware, with the availability of new processors, such as 
graphics processing units (GPUs), which have greatly reduced the time needed for training
networks, lowering them by a factor of 10 or 20. Another reason is certainly the ever more
numerous datasets on which to train a system, needed to train architectures of a certain
depth and with a high dimensionality for the input data.

Deep learning workflow
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Deep learning is based on the way the human brain processes information and learns,
responding to external stimuli. It consists in a machine learning model at several levels of
representation in which the deeper levels take as input the outputs of the previous levels,
transforming them and always abstracting more. Each level corresponds in this
hypothetical model to a different area of the cerebral cortex: when the brain receives
images, it processes them through various stages such as edge detection and form perception,
that is, from a primitive representation level to the most complex. For example, in an image
classification problem, each block gradually extracts the features, at various levels of
abstraction, inputting of data already processed, by means of filtering operations.

TensorFlow – A general overview
TensorFlow (h t t p s : / / w w w . t e n s o r f l o w . o r g /) is a software library, developed by Google
Brain Team within Google's Machine Learning Intelligence research organization, for the
purposes of conducting machine learning and deep neural network research. TensorFlow
then combines the computational algebra of compilation optimization techniques, making
easy the calculation of many mathematical expressions where the problem is the time
required to perform the computation.

The main features include:

Defining, optimizing, and efficiently calculating mathematical expressions
involving multi-dimensional arrays (tensors).
Programming support of deep neural networks and machine learning techniques.
Transparent use of GPU computing, automating management and optimization
of the same memory and the data used. You can write the same code and run it
either on CPUs or GPUs. More specifically, TensorFlow will figure out which
parts of the computation should be moved to the GPU.
High scalability of computation across machines and huge data sets.

https://www.tensorflow.org/
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TensorFlow home page

TensorFlow is available with Python and C++ support, and we shall use Python 2.7 for
learning, as indeed Python API is better supported and much easier to learn. The Python
installation depends on your systems; the download page
(https://www.python.org/downloads/) contains all the information needed for its
installation. In the next section, we explain very briefly the main features of the Python
language, with some programming examples.

https://www.python.org/downloads/
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Python basics
Python is a strongly typed and dynamic language (data types are necessary but it is not
necessary to explicitly declare them), case-sensitive (var and VAR are two different
variables), and object-oriented (everything in Python is an object).

Syntax
In Python, a line terminator is not required, and the blocks are specified with the
indentation. Indent to begin a block and remove indentation to conclude it, that's all.
Instructions that require an indented block end with a colon (:). Comments begin with the
hash sign (#) and are single-line. Strings on multiple lines are used for multi-line comments.
Assignments are accomplished with the equal sign (=). For equality tests we use the double
equal (==) symbol. You can increase and decrease a value by using += and -= followed by
the addend. This works with many data types, including strings. You can assign and use
multiple variables on the same line.

Following are some examples:

    >>> myvar = 3
    >>> myvar += 2
    >>> myvar
    5
    >>> myvar -= 1
    >>> myvar
    4
    """This is a comment"""
    >>> mystring = "Hello"
    >>> mystring += " world."
    >>> print mystring
    Hello world.

The following code swaps two variables in one line:

    >>> myvar, mystring = mystring, myvar
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Data types
The most significant structures in Python are lists, tuples, and dictionaries. The sets are 
integrated in Python since version 2.5 (for previous versions, they are available in the sets
library). Lists are similar to single-dimensional arrays but you can create lists that contain
other lists. Dictionaries are arrays that contain pairs of keys and values (hash table), and
tuples are immutable mono-dimensional objects. In Python arrays can be of any type, so
you can mix integers, strings, and so on in your lists/dictionaries and tuples. The index of
the first object in any type of array is always zero. Negative indices are allowed and
counting from the end of the array, -1 is the last element. Variables can refer to functions.

    >>> example = [1, ["list1", "list2"], ("one", "tuple")]
    >>> mylist = ["Element 1", 2, 3.14]
    >>> mylist [0]
    "Element 1"
    >>> mylist [-1]
    3.14
    >>> mydict = {"Key 1": "Val 1", 2: 3, "pi": 3.14}
    >>> mydict ["pi"]
    3.14
    >>> mytuple = (1, 2, 3)
    >>> myfunc = len
    >>> print myfunc (mylist)
    3

You can get an array range using a colon (:). Not specifying the starting index of the range
implies the first element; not indicating the final index implies the last element. Negative
indices count from the last element (-1 is the last element). Then run the following
command:

    >>> mylist = ["first element", 2, 3.14]
    >>> print mylist [:]
    ['first element', 2, 3.1400000000000001]
    >>> print mylist [0:2]
    ['first element', 2]
    >>> print mylist [-3:-1]
    ['first element', 2]
    >>> print mylist [1:]
    [2, 3.14]
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Strings
Python strings are indicated either with a single quotation mark (') or double (") and are
allowed to use a notation within a delimited string on the other ("He said' hello '."It
is valid). Strings of multiple lines are enclosed in triple (or single) quotes ("""). Python
supports unicode; just use the syntax: "This is a unicode string". To insert values
into a string , use the % operator (modulo) and a tuple. Each % is replaced by a tuple
element, from left to right, and is permitted to use a dictionary for the replacements.

 >>> print "Nome: %s\nNumber: %s\nString: %s" % (myclass.nome, 3, 3 * "-")
    Name: Poromenos
    Number: 3
    String: ---
    strString = """this is a string
    on multiple lines."""
>>> print "This %(verbo)s un %(name)s." % {"name": "test", "verb": "is"}
    This is a test.

Control flow
The instructions for flow control are if, for, and while. There is the select control flow;
in its place, we use if. The for control flow is used to enumerate the members of a list. To
get a list of numbers, you use range (number).

    rangelist = range(10)
    >>> print rangelist
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Let's check if number is one of the numbers in the tuple:

    for number in rangelist:
        if number in (3, 4, 7, 9):
            # "Break" ends the for instruction without the else clause
            break
        else:
            # "Continue" continues with the next iteration of the loop
            continue
    else:
        # this is an optional "else"
        # executed only if the loop is not interrupted with "break".
        pass # it does nothing
    if rangelist[1] == 2:
        print "the second element (lists are 0-based) is 2"
    elif rangelist[1] == 3:
        print "the second element is 3"
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    else:
        print "I don't know"
    while rangelist[1] == 1:
        pass

Functions
Functions are declared with the keyword def. Any optional arguments must be declared
after those that are mandatory and must have a value assigned. When calling functions
using arguments to name you must also pass the value. Functions can return a tuple (tuple
unpacking enables the return of multiple values). Lambda functions are in-line. Parameters
are passed by reference, but immutable types (tuples, integers, strings, and so on) cannot be
changed in the function. This happens because it is only passed through the position of the
element in memory, and assigning another object to the variable results in the loss of the
object reference earlier.

For example:

    # equal to a def f(x): return x + 1
    funzionevar = lambda x: x + 1
    >>> print funzionevar(1)
    2
    def passing_example(my_list,my_int):
        my_list.append("new element")
        my_int = 4
        return my_list, my_int
    >>> input_my_list = [1, 2, 3]
    >>> input_my_int = 10
    >>> print passing_example(input_my_list, input_my_int)
    ([1, 2, 3, 'new element'], 10)
    >>> my_list
    [1, 2, 3, 'new element']
    >>> my_int
    10
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Classes
Python supports multiple inheritance of classes. The variables and private methods are
declared by convection (it is not a rule of language) by preceding them with two
underscores (__). We can assign attributes (properties) to arbitrary instances of a class.

The following is an example:

    class Myclass:
        common = 10
        def __init__(self):
            self.myvariable= 3
        def myfunc(self, arg1, arg2):
            return self.myvariable
    # We create an instance of the class
    >>> instance= Myclass()
    >>> instance.myfunc(1, 2)
    3
    # This variable is shared by all instances
    >>> instance2= Myclass()
    >>> instance.common
    10
    >>> instance2.common
    10
    # Note here how we use the class name
    # Instead of the instance.
    >>> Myclass.common = 30
    >>> instance.common
    30
    >>> instance2.common
    30
    # This does not update the variable in the class,
    # Instead assign a new object to the variable
    # of the first instance.
    >>> instance.common = 10
    >>> instance.common
    10
    >>> instance2.common
    30
    >>> Myclass.common = 50
    # The value is not changed because "common" is an instance variable.
    >>> instance.common
    10
    >>> instance2.common
    50
    # This class inherits from Myclass. Multiple inheritance
    # is declared like this:
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    # class AltraClasse(Myclass1, Myclass2, MyclassN)
    class AnotherClass(Myclass):
        # The topic "self" is automatically passed
        # and makes reference to instance of the class, so you can set
        # of instance variables as above, but within the class.
    def __init__(self, arg1):
            self.myvariable= 3
            print arg1
    >>> instance= AnotherClass ("hello")
    hello
    >>> instance.myfunc(1, 2)
    3
    # This class does not have a member (property) .test member, but
    # We can add one all instance when we want. Note
    # .test That will be a member of only one instance.
    >>> instance.test = 10
    >>> instance.test
    10

Exceptions
Exceptions in Python are handled with try-except blocks [exception_name]:

    def my_func():
        try:
            # Division by zero causes an exception
            10 / 0
        except ZeroDivisionError:
            print "Oops, error"
        else:
            # no exception, let's proceed
            pass
        finally:
    # This code is executed when the block
        # Try..except is already executed and all exceptions
        # Were handled, even if there is a new
        # Exception directly in the block.
            print "finish"
    >>> my_func()
    Oops, error.
    finish
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Importing a library
External libraries are imported with import [library name]. You can also use the form
[libraryname] import [funcname] to import individual features. Here's an example:

import random
from time import clock
randomint = random.randint(1, 100)
>>> print randomint
64

Installing TensorFlow
The TensorFlow Python API supports Python 2.7 and Python 3.3+. The GPU version (Linux
only) requires the Cuda Toolkit >= 7.0 and cuDNN >= v2.

When working in a Python environment, it is recommended you use virtualenv. It will
isolate your Python configuration for different projects; using virtualenv  will not
overwrite existing versions of Python packages required by TensorFlow.

Installing on Mac or Linux distributions
The following are the steps to install TensorFlow on Mac and Linux system:

First install pip and virtualenv (optional) if they are not already installed:1.

         For Ubuntu/Linux 64-bit:

        $ sudo apt-get install python-pip python-dev python-virtualenv

               For Mac OS X:

        $ sudo easy_install pip
        $ sudo pip install --upgrade virtualenv

Then you can create a virtual environment virtualenv. The following commands2.
create a virtual environment virtualenv in the ~ / tensorflow directory:

    $ virtualenv --system-site-packages ~/tensorflow



TensorFlow – Basic Concepts

[ 20 ]

The next step is to activate virtualenv as follows:3.

    $ source ~/tensorflow/bin/activate.csh
    (tensorflow)$

Henceforth, the name of the environment we're working in precedes the4.
command line. Once activated, Pip is used to install TensorFlow within it.

               For Ubuntu/Linux 64-bit, CPU:

(tensorflow)$ pip install --upgrade
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-n
one-linux_x86_64.whl

                 For Mac OS X, CPU:

(tensorflow)$ pip install --upgrade
https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any
.whl

If you want to use your GPU card with TensorFlow, then install another package. I
recommend you visit the official documentation to see if your GPU meets the specifications
required to support TensorFlow.

To enable your GPU with TensorFlow, you can refer to
(https://www.tensorflow.org/versions/r0.9/get_started/os_s
etup.html#optional-linux-enable-gpu-support) for a complete
description.

Finally, when you've finished, you must disable the virtual environment:

    (tensorflow)$ deactivate

Given the introductory nature of this book, I suggest the reader to visit the
download and setup TensorFlow page at (h t t p s : / / w w w . t e n s o r f l o w . o r
g / v e r s i o n s / r 0 . 7 / g e t _ s t a r t e d / o s _ s e t u p . h t m l # d o w n l o a d - a n d - s e

t u p) to find more information about other ways to install TensorFlow.

https://www.tensorflow.org/versions/r0.9/get_started/os_setup.html#optional-linux-enable-gpu-support
https://www.tensorflow.org/versions/r0.9/get_started/os_setup.html#optional-linux-enable-gpu-support
https://www.tensorflow.org/versions/r0.7/get_started/os_setup.html#download-and-setup
https://www.tensorflow.org/versions/r0.7/get_started/os_setup.html#download-and-setup
https://www.tensorflow.org/versions/r0.7/get_started/os_setup.html#download-and-setup
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Installing on Windows
If you can't get a Linux-based system, you can install Ubuntu on a virtual machine; just use
a free application called VirtualBox, which lets you create a virtual PC on Windows and
install Ubuntu in the latter. So you can try the operating system without creating partitions
or dealing with cumbersome procedures.

After installing VirtualBox, you can install Ubuntu (www.ubuntu.com)
and then follow the installation for Linux machines to install TensorFlow.

Installation from source
However, it may happen that the Pip installation causes problems, particularly when using
the visualization tool TensorBoard (see
https://github.com/tensorflow/tensorflow/issues/530). To fix this problem, I
suggest you build and install TensorFlow, starting form source files, through the following
steps:

Clone the TensorFlow repository:1.

    git clone --recurse-submodules

    h t t p s : / / g i t h u b . c o m / t e n s o r f l o w / t e n s o r f l o w

Install Bazel (dependencies and installer), following the instructions at:2.

               h t t p : / / b a z e l . i o / d o c s / i n s t a l l . h t m l.

Run the Bazel installer:3.

   chmod +x bazel-version-installer-os.sh
  ./bazel-version-installer-os.sh --user

Install the Python dependencies:4.

    sudo apt-get install python-numpy swig python-dev

Configure (GPU or no GPU ?) your installation in the TensorFlow downloaded5.
repository:

    ./configure

http://www.ubuntu.com
https://github.com/tensorflow/tensorflow/issues/530
https://github.com/tensorflow/tensorflow
http://bazel.io/docs/install.html
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Create your own TensorFlow Pip package using bazel:6.

    bazel build -c opt //tensorflow/tools/pip_package:build_pip_package

To build with GPU support, use bazel build -c opt --config=cuda7.
followed again by:

    //tensorflow/tools/pip_package:build_pip_package

Finally, install TensorBoard where the name of the .whl file will depend on your8.
platform.

   pip install /tmp/tensorflow_pkg/tensorflow-0.7.1-py2-none-
linux_x86_64.whl

Good Luck!9.

Please refer to
https://www.tensorflow.org/versions/r0.7/get_started/os_s

etup.html#installation-for-linux for further information.

Testing your TensorFlow installation
Open a terminal and type the following lines of code:

    >>> import tensorflow as tf
    >>> hello = tf.constant("hello TensorFlow!")
    >>> sess=tf.Session()

To verify your installation, just type:

    >>> print(sess.run(hello))

You should have the following output:

    Hello TensorFlow!
    >>>

https://www.tensorflow.org/versions/r0.7/get_started/os_setup.html#installation-for-linux
https://www.tensorflow.org/versions/r0.7/get_started/os_setup.html#installation-for-linux
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First working session
Finally it is time to move from theory to practice. I will use the Python 2.7 IDE to write all
the examples. To get an initial idea of how to use TensorFlow, open the Python editor and
write the following lines of code:

    x = 1
    y = x + 9
    print(y)
    import tensorflow as tf
    x = tf.constant(1,name='x')
    y = tf.Variable(x+9,name='y')
    print(y)

As you can easily understand in the first three lines, the constant x, set equal to 1, is then
added to 9 to set the new value of the variable y, and then the end result of the variable y is
printed on the screen.

In the last four lines, we have translated according to TensorFlow library the first three
variables.

If we run the program, we have the following output:

    10
    <tensorflow.python.ops.variables.Variable object at    0x7f30ccbf9190>

The TensorFlow translation of the first three lines of the program example produces a
different result. Let's analyze them:

The following statement should never be missed if you want to use the1.
TensorFlow library. It tells us that we are importing the library and call it tf:

    import tensorflow as tf

We create a constant value called x, with a value equal to one:2.

    x = tf.constant(1,name='x')

Then we create a variable called y. This variable is defined with the simple3.
equation y=x+9:

    y = tf.Variable(x+9,name='y')
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Finally, print out the result:4.

    print(y)

So how do we explain the different result? The difference lies in the variable definition. In
fact, the variable y doesn't represent the current value of x + 9, instead it means: when the
variable y is computed, take the value of the constant x and add 9 to it. This is the reason why the
value of y has never been carried out. In the next section, I'll try to fix it.

So we open the Python IDE and enter the following lines:
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Running the preceding code, the output result is finally as follows:

    10

We have removed the print instruction, but we have initialized the model variables:

    model = tf.initialize_all_variables()

And, mostly, we have created a session for computing values. In the next step, we run the
model, created previously, and finally run just the variable y and print out its current value.

    with tf.Session() as session:
        session.run(model)
        print(session.run(y))

This is the magic trick that permits the correct result. In this fundamental step, the execution
graph called Data Flow Graph is created in the session, with all the dependencies between
the variables. The y variable depends on the variable x, and that value is transformed by
adding 9 to it. The value is not computed until the session is executed.

This last example introduced another important feature in TensorFlow, the Data Flow
Graph.

Data Flow Graphs
A machine learning application is the result of the repeated computation of complex
mathematical expressions. In TensorFlow, a computation is described using the Data Flow
Graph, where each node in the graph represents the instance of a mathematical operation
(multiply, add, divide, and so on), and each edge is a multi-dimensional data set (tensors)
on which the operations are performed.

TensorFlow supports these constructs and these operators. Let's see in detail how nodes
and edges are managed by TensorFlow:

Node: In TensorFlow, each node represents the instantion of an operation. Each
operation has >= inputs and >= 0 outputs.
Edges: In TensorFlow, there are two types of edge:

Normal Edges: They are carriers of data structures (tensors), where
an output of one operation (from one node) becomes the input for
another operation.
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Special Edges: These edges are not data carriers between the
output of a node (operator) and the input of another node. A
special edge indicates a control dependency between two nodes.
Let's suppose we have two nodes A and B and a special edges
connecting A to B; it means that B will start its operation only
when the operation in A ends. Special edges are used in Data Flow
Graph to set the happens-before relationship between operations
on the tensors.

Let's explore some features in Data Flow Graph in greater detail:

Operation: This represents an abstract computation, such as adding or
multiplying matrices. An operation manages tensors. It can just be polymorphic:
the same operation can manipulate different tensor element types. For example,
the addition of two int32 tensors, the addition of two float tensors, and so on.
Kernel: This represents the concrete implementation of that operation. A kernel
defines the implementation of the operation on a particular device. For example,
an add matrix operation can have a CPU implementation and a GPU one. In the
following section, we have introduced the concept of sessions to create a del
execution graph in TensorFlow. Let's explain this topic:
Session: When the client program has to establish communication with the
TensorFlow runtime system, a session must be created. As soon as the session is
created for a client, an initial graph is created and is empty. It has two
fundamental methods:

session.extend: In a computation, the user can extend the
execution graph, requesting to add more operations (nodes) and
edges (data).
session.run: Using TensorFlow, sessions are created with some
graphs, and these full graphs are executed to get some outputs, or
sometimes, subgraphs are executed thousands/millions of times
using run invocations. Basically, the method runs the execution
graph to provide outputs.
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Features in Data Flow Graph

TensorFlow programming model
Adopting Data Flow Graph as execution model, you divide the data flow design (graph
building and data flow) from its execution (CPU, GPU cards, or a combination), using a
single programming interface that hides all the complexities. It also defines what the 
programming model should be like in TensorFlow.
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Let's consider the simple problem of multiplying two integers, namely a and b.

The following are the steps required for this simple problem:

Define and initialize the variables. Each variable should define the state of a1.
current execution. After importing the TensorFlow module in Python:

    import tensorflow as tf

We define the variables a and b involved in the computation. These are defined2.
via a more basic structure, called the placeholder:

    a = tf.placeholder("int32")
    b = tf.placeholder("int32")

A placeholder allows us to create our operations and to build our computation3.
graph, without needing the data.
Then we use these variables, as inputs for TensorFlow's function mul:4.

    y = tf.mul(a,b)
    this function will return the result of the multiplication the input
integers a and b.

Manage the execution flow, this means that we must build a session:5.

    sess = tf.Session()

Visualize the results. We run our model on the variables a and b, feeding data6.
into the data flow graph through the placeholders previously defined.

    print sess.run(y , feed_dict={a: 2, b: 5})

How to use TensorBoard
TensorBoard is a visualization tool, devoted to analyzing Data Flow Graph and also to
better understand the machine learning models. It can view different types of statistics
about the parameters and details of any part of a computer graph graphically. It often
happens that a graph of computation can be very complex. A deep neural network can have
up to 36,000 nodes. For this reason, TensorBoard collapses nodes in high-level blocks,
highlighting the groups with identical structures. Doing so allows a better analysis of the
graph, focusing only on the core sections of the computation graph. Also, the visualization
process is interactive; user can pan, zoom, and expand the nodes to display the details.
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The following figure shows a neural network model with TensorBoard:

A TensorBoard visualization example

TensorBoard's algorithms collapse nodes into high-level blocks and highlight groups with
the same structures, while also separating out high-degree nodes. The visualization tool is
also interactive: the users can pan, zoom in, expand, and collapse the nodes.

TensorBoard is equally useful in the development and tuning of a machine learning model.
For this reason, TensorFlow lets you insert so-called summary operations into the graph.
These summary operations monitor changing values (during the execution of a
computation) written in a log file. Then TensorBoard is configured to watch this log file
with summary information and display how this information changes over time.

Let's consider a basic example to understand the usage of TensorBoard. We have the
following example:

    import tensorflow as tf
    a = tf.constant(10,name="a")
    b = tf.constant(90,name="b")
    y = tf.Variable(a+b*2, name="y")
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    model = tf.initialize_all_variables()
    with tf.Session() as session:
        merged = tf.merge_all_summaries()
        writer = tf.train.SummaryWriter\
                          ("/tmp/tensorflowlogs",session.graph)
         session.run(model)
        print(session.run(y))

That gives the following result:

    190

Let's point into the session management. The first instruction to consider is as follows:

    merged = tf.merge_all_summaries()

This instruction must merge all the summaries collected in the default graph.

Then we create SummaryWriter. It will write all the summaries (in this case the execution
graph) obtained from the code's execution into the /tmp/tensorflowlogs directory:

 writer = tf.train.SummaryWriter\
                        ("/tmp/tensorflowlogs",session.graph)

Finally, we run the model and so build the Data Flow Graph:

    session.run(model)
    print(session.run(y))

The use of TensorBoard is very simple. Let's open a terminal and enter the following:

    $tensorboard --logdir=/tmp/tensorflowlogs

A message such as the following should appear:

    startig tensorboard on port 6006
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Then, by opening a web browser, we should display the Data Flow Graph with auxiliary
nodes:

Data Flow Graph display with TensorBoard
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Now we will be able to explore the Data Flow Graph:

Explore the Data Flow Graph display with TensorBoard
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TensorBoard uses special icons for constants and summary nodes. To summarize, we report
in the next figure the table of node symbols displayed:

Node symbols in TensorBoard
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Summary
In this chapter, we introduced the main topics: machine learning and deep learning. While
machine learning explores the study and construction of algorithms that can learn from,
and make predictions on data, deep learning is based precisely on the way the human brain
processes information and learns, responding to external stimuli.

In this vast scientific research and practical application area, we can firmly place the
TensorFlow software library, developed by the Google's research group for artificial
intelligence (Google Brain Project) and released as open source software on November 9,
2015.

After electing the Python programming language as the development tool for our examples
and applications, we saw how to install and compile the library, and then carried out a first
working session. This allowed us to introduce the execution model of TensorFlow and Data
Flow Graph. It led us to define what our programming model should be.

The chapter ended with an example of how to use an important tool for debugging machine
learning applications: TensorBoard.

In the next chapter, we will continue our journey into the TensorFlow library, with the
intention of showing its versatility. Starting from the fundamental concept, tensors, we will
see how to use the library for purely math applications.

https://en.wikipedia.org/wiki/Algorithm


2
Doing Math with TensorFlow

In this chapter, we will cover the following topics:

The tensor data structure
Handling tensors with TensorFlow
Complex numbers and fractals
Computing derivatives
Random numbers
Solving partial differential equations

The tensor data structure
Tensors are the basic data structures in TensorFlow. As we have already said, they
represent the connecting edges in a Data Flow Graph. A tensor simply identifies a
multidimensional array or list.

It can be identified by three parameters,  rank, shape, and type:

rank: Each tensor is described by a unit of dimensionality called rank. It
identifies the number of dimensions of the tensor. For this reason, a rank is
known as order or n-dimensions of a tensor (for example, a rank 2 tensor is a
matrix and a rank 1 tensor is a vector).
shape: The shape of a tensor is the number of rows and columns it has.
type: It is the data type assigned to the tensor's elements.
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Well, now we take confidence with this fundamental data structure. To build a tensor, we
can:

Build an n-dimensional array; for example, by using the NumPy library
Convert the n-dimensional array into a TensorFlow tensor

Once we obtain the tensor, we can handle it using the TensorFlow operators. The following
figure provides a visual explanation of the concepts introduced:

Visualization of multidimensional tensors
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One-dimensional tensors
To build a one-dimensional tensor, we use the Numpy array(s) command, where s is a
Python list:

>>> import numpy as np
>>> tensor_1d = np.array([1.3, 1, 4.0, 23.99])

Unlike a Python list, the commas between the elements are not shown:

>>> print tensor_1d
[  1.3    1.     4.    23.99]

The indexing is the same as Python lists. The first element has position 0, the third element
has position 2, and so on:

>>> print tensor_1d[0]
1.3
>>> print tensor_1d[2]
4.0

Finally, you can view the basic attributes of the tensor, the rank of the tensor:

>>> tensor_1d.ndim
1

The tuple of the tensor's dimension is as follows:

>>> tensor_1d.shape
(4L,)

The tensor's shape has just four values in a row.

The data type in the tensor:

>>> tensor_1d.dtype
dtype('float64')

Now, let's see how to convert a NumPy array into a TensorFlow tensor:

import TensorFlow as tf
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The TensorFlow function tf_convert_to_tensor converts Python objects of various
types to tensor objects. It accepts tensor objects, Numpy arrays, Python lists, and Python
scalars:

tf_tensor=tf.convert_to_tensor(tensor_1d,dtype=tf.float64)

Running the Session, we can visualize the tensor and its elements as follows:

with tf.Session() as sess:
    print sess.run(tf_tensor)
    print sess.run(tf_tensor[0])
    print sess.run(tf_tensor[2])

That gives the following results:

>>
[  1.3    1.     4.    23.99]
1.3
4.0
>>>

Two-dimensional tensors
To create a two-dimensional tensor or matrix, we again use array(s), but s will be a 
sequence of array:

>>> import numpy as np

>>> tensor_2d=np.array([(1,2,3,4),(4,5,6,7),(8,9,10,11),(12,13,14,15)])

>>> print tensor_2d
[[ 1  2  3  4]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]
>>>

A value in tensor_2d is identified by the expression tensor_2d[row,col], where row is
the row position and col is the column position:

>>> tensor_2d[3][3]
15
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You can also use the slice operator : to extract a submatrix:

>>> tensor_2d[0:2,0:2]
array([[1, 2],
       [4, 5]])

In this case, we extracted a 2×2 submatrix, containing row 0 and 1, and columns 0 and 1 of
tensor_2d.  TensorFlow has its own slice operator. In the next subsection we will see how
to use it.

Tensor handling
Let's see how we can apply a little more complex operations to these data structures.
Consider the following code:

Import the libraries:1.

    import TensorFlow as tf
    import numpy as np

Let's build two integer arrays. These represents two 3×3 matrices:2.

    matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='int32')
    matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='int32')

Visualize them:3.

    print "matrix1  ="
    print matrix1

    print "matrix2 ="
    print matrix2

To use these matrices in our TensorFlow environment, they must be transformed4.
into a tensor data structure:

    matrix1 = tf.constant(matrix1)
    matrix2 = tf.constant(matrix2)

We used the TensorFlow constant operator to perform the transformation.5.
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The matrices are ready to be manipulated with TensorFlow operators. In this6.
case, we calculate a matrix multiplication and a matrix sum:

    matrix_product = tf.matmul(matrix1, matrix2)
    matrix_sum = tf.add(matrix1,matrix2)

The following matrix will be used to compute a matrix determinant:7.

    matrix_3 = np.array([(2,7,2),(1,4,2),(9,0,2)],dtype='float32')

    print "matrix3 ="
    print matrix_3

    matrix_det = tf.matrix_determinant(matrix_3)

It's time to create our graph and run the session, with the tensors and operators8.
created:

     with tf.Session() as sess:
        result1 = sess.run(matrix_product)
        result2 = sess.run(matrix_sum)
        result3 = sess.run(matrix_det)

The results will be printed out by running the following command:9.

    print "matrix1*matrix2 ="
    print result1

    print "matrix1 + matrix2 ="
    print result2

    print "matrix3 determinant result ="
    print result3
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The following figure shows the results, after running the code:

TensorFlow provides numerous math operations on tensors. The following table summarizes them:

TensorFlow operator Description

tf.add Returns the sum

tf.sub Returns subtraction

tf.mul Returns the multiplication

tf.div Returns the division
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tf.mod Returns the module

tf.abs Returns the absolute value

tf.neg Returns the negative value

tf.sign Returns the sign

tf.inv Returns the inverse

tf.square Returns the square

tf.round Returns the nearest integer

tf.sqrt Returns the square root

tf.pow Returns the power

tf.exp Returns the exponential

tf.log Returns the logarithm

tf.maximum Returns the maximum

tf.minimum Returns the minimum

tf.cos Returns the cosine

tf.sin Returns the sine

Three-dimensional tensors
The following commands build a three-dimensional tensor:

>>> import numpy as np
>>> tensor_3d = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])
>>> print tensor_3d
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
>>>

The three-dimensional tensor created is a 2x2x2 matrix:

>>> tensor_3d.shape
(2L, 2L, 2L)
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To retrieve an element from a three-dimensional tensor, we use an expression of the
following form:

tensor_3d[plane,row,col]

Following these settings:

Matrix 3×3 representation

So all the four elements in the first plane identified by the value of the variable plane equal
to zero:

>>> tensor_3d[0,0,0]
1
>>> tensor_3d[0,0,1]
2
>>> tensor_3d[0,1,0]
3
>>> tensor_3d[0,1,1]
4

The three-dimensional tensors allow to introduce the next topic, linked to the manipulation
of images but more generally introduces us to operate as simple transformations on tensors.
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Handling tensors with TensorFlow
TensorFlow is designed to handle tensors of all sizes and operators that can be used to
manipulate them. In this example, in order to see array manipulations, we are going to
work with a digital image. As you probably know, a color digital image that is a MxNx3
size matrix (a three order tensor), whose components correspond to the components of red,
green, and blue in the image (RGB space), means that each feature in the rectangular box for
the RGB image will be specified by three coordinates, i,  j, and k.

The RGB tensor

The first thing I want to show you is how to upload an image, and then to extract a sub-
image from the original, using the TensorFlow slice operator.
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Prepare the input data
Using the imread command in matplotlib, we import a digital image in standard format
colors (JPG, BMP, TIF):

import matplotlib.image as mp_image
filename = "packt.jpeg"
input_image = mp_image.imread(filename)

However, we can see the  rank and the shape of the tensor:

print 'input dim = {}'.format(input_image.ndim)
print 'input shape = {}'.format(input_image.shape)

You'll see the output, which is (80, 144, 3). This means the image is 80 pixels high, 144
pixels wide, and 3 colors deep.

Finally, using matplotlib, it is possible to visualize the imported image:

import matplotlib.pyplot as plt
plt.imshow(input_image)
plt.show()

The starting image



Doing Math with TensorFlow

[ 46 ]

In this example, slice is a bidimensional segment of the starting image, where each pixel has
the RGB components, so we need a placeholder to store all the values of the slice:

import TensorFlow as tf
 my_image = tf.placeholder("uint8",[None,None,3])

For the last dimension, we'll need only three values. Then we use the TensorFlow operator
slice to create a sub-image:

slice = tf.slice(my_image,[10,0,0],[16,-1,-1])

The last step is to build a TensorFlow working session:

with tf.Session() as session:
    result = session.run(slice,feed_dict={my_image: input_image})
    print(result.shape)

plt.imshow(result)
plt.show()

The resulting shape is then as the following image shows:

The input image after the slice
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In this next example, we will perform a geometric transformation of the input image, using
the transpose operator:

import TensorFlow as tf

We associate the input image to a variable we call x:

x = tf.Variable(input_image,name='x')

We then initialize our model:

model = tf.initialize_all_variables()

Next, we build up the session with that we run our code:

with tf.Session() as session:

To perform the transpose of our matrix, use the transpose function of TensorFlow. This
method performs a swap between the axes 0 and 1 of the input matrix, while the z axis is
left unchanged:

    x = tf.transpose(x, perm=[1,0,2])
    session.run(model)
    result=session.run(x)

plt.imshow(result)
plt.show()
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The result is the following:

The transposed image

Complex numbers and fractals
First of all, we look at how Python handles complex numbers. It is a simple matter. For
example, setting x = 5 + 4j in Python, we must write the following:

>>> x = 5.+4j

It means that >>> x is equal to 5+4j.

At the same time, you can write the following:

>>> x = complex(5,4)
>>> x
(5+4j)
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We also note that:

Python uses j to mean √-1 instead of i in math.
If you put a number before the j, Python will consider it as an imaginary
number, otherwise, its a variable. It means that if you want to write the imaginary
number i, you must write 1j rather than j.

To get the real and imaginary parts of a Python complex number, you can use the
following:

>>> x.real
5.0
>>> x.imag
4.0
>>>

We turn now to our problem, namely how to display the fractals with TensorFlow. The 
Mandelbrot set is one of the most famous fractals. A fractal is a geometric object that is
repeated in its structure at different scales. Fractals are very common in nature, and an
example is the coast of Great Britain.

The Mandelbrot set is defined for the complex numbers c for which the following
succession is true and bounded:

Z(n+1) = Z(n)2 + c, where  Z(0) = 0
The set is named after its creator Benoît Mandelbrot, a Polish mathematician famous for
making famous fractals. However, he was able to give a shape or graphic representation to
the set of Mandelbrot only with the help of computer programming. In 1985, he published
in Scientific American the first algorithm to calculate the Mandelbrot set. The algorithm (for
each point complex point Z):

Z has initial value equal to 0, Z(0) = 0.1.
Choose the complex number c as the current point. In the Cartesian plane, the2.
abscissa axis (horizontal line) represents the real part, while the axis of ordinates
(vertical line) represents the imaginary part of c.
Iteration: Z(n + 1) = Z(n)2 + c3.

Stop when Z(n)2  is larger than the maximum radius;

Now we see through simple steps how we can translate the algorithm mentioned earlier
using TensorFlow.
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Prepare the data for Mandelbrot set
Import the necessary libraries to our example:

import TensorFlow as tf
import numpy as np
import matplotlib.pyplot as plt

We build a complex grid that will contain our Mandelbrot's set. The region of the complex
plane is between -1.3 and +1.3 on the real axis and between -2j and +1j on the
imaginary axis. Each pixel location in each image will represent a different complex value,
z:

Y, X = np.mgrid[-1.3:1.3:0.005, -2:1:0.005]
Z = X+1j*Y
c = tf.constant(Z.astype(np.complex64))

Then we define data structures, or the tensor TensorFlow that contains all the data to be
included in the calculation. We then define two variables. The first is the one on which we
will make our iteration. It has the same dimensions as the complex grid, but it is declared as
variable, that is, its values will change in the course of the calculation:

zs = tf.Variable(c)

The next variable is initialized to zero. It also has the same size as the variable zs:

ns = tf.Variable(tf.zeros_like(c, tf.float32))

Build and execute the Data Flow Graph
for Mandelbrot's set
Instead to introduce a session we instantiate an InteractiveSession():

sess = tf.InteractiveSession()

It requires, as we shall see, the Tensor.eval() and Operation.run() methods. Then we
initialize all the variables involved through the run() method:

tf.initialize_all_variables().run()

Start the iteration:

  zs_ = zs*zs + c
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Define the stop condition of the iteration:

not_diverged = tf.complex_abs(zs_) < 4

Then we use the group operator that groups multiple operations:

step = tf.group(zs.assign(zs_),\
             ns.assign_add(tf.cast(not_diverged, tf.float32)))

The first operation is the step iteration Z(n+1) = Z(n)2 + c to create a new value.

The second operation adds this value to the correspondent element variable in ns. When
this op finishes, all ops in input have finished. This operator has no output.

Then we run the operator for two hundred steps:

for i in range(200): step.run()

Visualize the result for Mandelbrot's set
The result will be the tensor ns.eval(). Using matplotlib, let's visualize the result:

plt.imshow(ns.eval())
plt.show()

The Mandelbrot set
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Of course, the Mandelbrot set is not the only fractal we can visualize. Julia sets are fractals
that have been named after Gaston Maurice Julia for his work in this field. Their building
process is very similar to that used for the Mandelbrot set.

Prepare the data for Julia's set
Let's define the output complex plane. It is between -2 and +2 on the real axis and between
-2j and +2j on the imaginary axis:

Y, X = np.mgrid[-2:2:0.005, -2:2:0.005]

And the current point location:

Z = X+1j*Y

The definition of the Julia's set requires redefing Z as a constant tensor:

Z = tf.constant(Z.astype("complex64"))

Thus the input tensors supporting our calculation is as follows:

zs = tf.Variable(Z)
ns = tf.Variable(tf.zeros_like(Z, "float32"))

Build and execute the Data Flow Graph for Julia's
set
As in the previous example, we create our own interactive session:

sess = tf.InteractiveSession()

We then initialize the input tensors:

tf.initialize_all_variables().run()

To compute the new values of the Julia set, we will use the iterative formula
Z(n+1) = Z(n)2 – c, where the initial point c will be equal to the imaginary number 0.75i:

c = complex(0.0,0.75)
zs_ = zs*zs - c
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The grouping operator and the stop iteration's condition will be the same as in the
Mandelbrot computation:

not_diverged = tf.complex_abs(zs_) < 4

step = tf.group(zs.assign(zs_),\
              ns.assign_add(tf.cast(not_diverged, "float32")))

Finally, we run the operator for two hundred steps:

for i in range(200): step.run()

Visualize the result
To visualize the result run the following command:

plt.imshow(ns.eval())
plt.show()

The Julia set
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Computing gradients
TensorFlow has functions to solve other more complex tasks. For example, we will use a
mathematical operator that calculates the derivative of y with respect to its expression x
parameter. For this purpose, we use the tf.gradients() function.

Let us consider the math function y = 2x². We want to compute the gradient di y with
respect to x=1. The following is the code to compute this gradient:

First, import the TensorFlow library:1.

    import TensorFlow as tf

The x variable is the independent variable of the function:2.

    x = tf.placeholder(tf.float32)

Let's build the function:3.

    y =  2*x*x

Finally, we call the  tf.gradients() function with y and x as arguments:4.

    var_grad = tf.gradients(y, x)

To evaluate the gradient, we must build a session:5.

    with tf.Session() as session:

The gradient will be evaluated on the variable x=1:6.

    var_grad_val = session.run(var_grad,feed_dict={x:1})

The var_grad_val value is the feed result, to be printed:7.

    print(var_grad_val)

That gives the following result:8.

    >>
    [4.0]
    >>
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Random numbers
The generation of random numbers is essential in machine learning and within the training
algorithms. When random numbers are generated by a computer, they are generated by
a Pseudo Random Number Generator (PRNG). The term pseudo comes from the fact that
the computer is a stain logically programmed running of instructions that can only simulate
randomness. Despite this logical limitation, computers are very efficient at generating
random numbers. TensorFlow provides operators to create random tensors with different
distributions.

Uniform distribution
Generally, when we need to work with random numbers, we try to get repeated values
with the same frequency, uniformly distributed. The operator TensorFlow provides values
between minval and maxval, all with the same probability. Let's see a simple example
code:

random_uniform(shape, minval, maxval, dtype, seed, name)

We import the TensorFlow library and matplotlib to display the results:

import TensorFlow as tf
import matplotlib.pyplot as plt

The uniform variable is a 1-dimensional tensor, the elements 100, containing values
ranging from 0 to 1, distributed with the same probability:

uniform = tf.random_uniform([100],minval=0,maxval=1,dtype=tf.float32)

Let's define the session:

sess = tf.Session()

In our session, we evaluate the tensor uniform, using the eval () operator:

with tf.Session() as session:
    print uniform.eval()
    plt.hist(uniform.eval(),normed=True)
    plt.show()
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As you can see, all intermediate values between 0 and 1 have approximately the same
frequency. This behavior is called uniform distribution. The result of execution is therefore
as follows:

Uniform distribution

Normal distribution
In some specific cases, you may need to generate random numbers that differ by a few
units. In this case, we used the normal distribution of random numbers, also called Gaussian
distribution, that increases the probability of the next issues extraction at 0. Each integer
represents the standard deviation. As shown from the future issues to the margins of the
range have a very low chance of being extracted. The following is the implementation with
TensorFlow:

import TensorFlow as tf
import matplotlib.pyplot as plt
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norm = tf.random_normal([100], mean=0, stddev=2)
with tf.Session() as session:
    plt.hist(norm.eval(),normed=True)
    plt.show()

We created a 1d-tensor of shape [100] consisting of random normal values, with mean
equal to 0 and standard deviation equal to 2, using the operator tf.random_normal. The
following is the result:

Normal distribution
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Generating random numbers with seeds
We recall that our sequence is pseudo-random, because the values are calculated using a
deterministic algorithm and probability plays no real role. The seed is just a starting point
for the sequence and if you start from the same seed you will end up with the same
sequence. This is very useful, for example, to debug your code, when you are searching for
an error in a program and you must be able to reproduce the problem because every run
would be different.

Consider the following example where we have two uniform distributions:

uniform_with_seed = tf.random_uniform([1], seed=1)
uniform_without_seed = tf.random_uniform([1])

In the first uniform distribution, we began with the seed = 1. This means that repeatedly
evaluating the two distributions, the first uniform distribution will always generate the same
sequence of values:

print("First Run")
with tf.Session() as first_session:
print("uniform with (seed = 1) = {}"\
.format(first_session.run(uniform_with_seed)))
print("uniform with (seed = 1) = {}"\
.format(first_session.run(uniform_with_seed)))
print("uniform without seed = {}"\
.format(first_session.run(uniform_without_seed)))
print("uniform without seed = {}"\
.format(first_session.run(uniform_without_seed)))
print("Second Run")
with tf.Session() as second_session:
print("uniform with (seed = 1) = {}\
.format(second_session.run(uniform_with_seed)))
print("uniform with (seed = 1) = {}\
.format(second_session.run(uniform_with_seed)))
print("uniform without seed = {}"\
.format(second_session.run(uniform_without_seed)))
print("uniform without seed = {}"\
.format(second_session.run(uniform_without_seed)))
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As you can see, this is the end result. The uniform distribution with seed = 1 always gives
the same result:

>>>
First Run
uniform with (seed = 1) = [ 0.23903739]
uniform with (seed = 1) = [ 0.22267115]
uniform without seed = [ 0.92157185]
uniform without seed = [ 0.43226039]
Second Run
uniform with (seed = 1) = [ 0.23903739]
uniform with (seed = 1) = [ 0.22267115]
uniform without seed = [ 0.50188708]
uniform without seed = [ 0.21324408]
>>>

Montecarlo's method
We end the section on random numbers with a simple note about the Montecarlo method. It
is a numerical probabilistic method widely used in the application of high-performance
scientific computing. In our example, we will calculate the value of π:

import TensorFlow as tf

trials = 100
hits = 0

Generate pseudo-random points inside the square [-1,1]x[-1,1], using the
random_uniform function:

x = tf.random_uniform([1],minval=-1,maxval=1,dtype=tf.float32)
y = tf.random_uniform([1],minval=-1,maxval=1,dtype=tf.float32)
pi = []

Start the session:

sess = tf.Session()
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Inside the session, we calculate the value of π: the area of the circle is π and that of the 
square is 4. The relationship between the numbers inside the circle and the total of 
generated points must converge (very slowly) to π, and we count how many points fall
inside the circle equation x2+y2=1.

with sess.as_default():
    for i in range(1,trials):
        for j in range(1,trials):
            if x.eval()**2 + y.eval()**2 < 1 :
                hits = hits + 1
                pi.append((4 * float(hits) / i)/trials)

plt.plot(pi)
plt.show()

The figure shows the convergence during the number of tests to the π value
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Solving partial differential equations
A partial differential equation (PDE) is a differential equation involving partial derivatives
of an unknown function of several independent variables. PDEs are commonly used to
formulate and solve major physical problems in various fields, from quantum mechanics to
financial markets. In this section, we take the example from h t t p s : / / w w w . T e n s o r F l o w . o r
g / v e r s i o n s / r 0 . 8 / t u t o r i a l s / p d e s / i n d e x . h t m l, showing the use of TensorFlow in a
two-dimensional PDE solution that models the surface of square pond with a few raindrops
landing on it. The effect will be to produce bi-dimensional waves on the pond itself. We
won't concentrate on the computational aspects of the problem, as this is beyond the scope
of this book; instead we will focus on using TensorFlow to define the problem.

The starting point is to import these fundamental libraries:

import TensorFlow as tf
import numpy as np              
import matplotlib.pyplot as plt

Initial condition
First we have to define the dimensions of the problem. Let's imagine that our pond is a
500×500 square:

N = 500

The following two-dimensional tensor is the pond at time t = 0, that is, the initial condition
of our problem:

u_init = np.zeros([N, N], dtype=np.float32)

We have 40 random raindrops on it

for n in range(40):
  a,b = np.random.randint(0, N, 2)
  u_init[a,b] = np.random.uniform()

The np.random.randint(0, N, 2) is a NumPy function that returns random integers
from 0 to N on a two-dimensional shape.

https://www.TensorFlow.org/versions/r0.8/tutorials/pdes/index.html
https://www.TensorFlow.org/versions/r0.8/tutorials/pdes/index.html
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Using matplotlib, we can show the initial square pond:

plt.imshow(U.eval())
plt.show()

Zooming on the pond in its initial condition: the colored dots represent the raindrops fallen

Then we define the following tensor:

ut_init = np.zeros([N, N], dtype=np.float32)

It is the temporal evolution of the pond. At time t = tend it will contain the final state of the
pond.
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Model building
We must define some fundamental parameters (using TensorFlow placeholders) and a time
step of the simulation:

eps = tf.placeholder(tf.float32, shape=())

We must also define a physical parameter of the model, namely the damping coefficient:

damping = tf.placeholder(tf.float32, shape=())

Then we redefine our starting tensors as TensorFlow variables, since their values will
change over the course of the simulation:

U  = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

Finally, we build our PDE model. It represents the evolution in time of the pond after the
raindrops have fallen:

U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

As you can see, we introduced the laplace(U)  function to resolve the PDE (it will be
described in the last part of this section).

Using the TensorFlow group operator, we define how our pond in time t should evolve:

 step = tf.group(
  U.assign(U_),
  Ut.assign(Ut_))

Let's recall that the group operator groups multiple operations as a single one.

Graph execution
In our session we will see the evolution in time of the pond by 1000 steps, where each time
step is equal to 0.03s, while the damping coefficient is set equal to 0.04.

Let's initialize the TensorFlow variables:

tf.initialize_all_variables().run()
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Then we run the simulation:

for i in range(1000):
  step.run({eps: 0.03, damping: 0.04})
  if i % 50 == 0:
    clear_output()
    plt.imshow(U.eval())
    plt.show()

Every 50 steps the simulation result will be displayed as follows:

The pond after 400 simulation steps

Computational function used
Let's now see what is the Laplace(U) function and the ancillary functions used:

def make_kernel(a):
  a = np.asarray(a)
  a = a.reshape(list(a.shape) + [1,1])
  return tf.constant(a, dtype=1)
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def simple_conv(x, k):
  x = tf.expand_dims(tf.expand_dims(x, 0), -1)
  y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1],padding='SAME')
  return y[0, :, :, 0]

def laplace(x):
    laplace_k = make_kernel([[0.5, 1.0, 0.5],
                           [1.0, -6., 1.0],
                           [0.5, 1.0, 0.5]])
  return simple_conv(x, laplace_k)

These functions describe the physics of the model, that is, as the wave is created and
propagates in the pond. I will not go into the details of these functions, the understanding
of which is beyond the scope of this book.

The following figure shows the waves on the pond after the raindrops have fallen.

Zooming on the pond
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Summary
In this chapter, we looked at some of the mathematical potential of TensorFlow. From the
fundamental definition of a tensor, the basic data structure for any type of computation, we
saw with some examples how to handle these data structures using the TensorFlow's math
operators. Using complex numbers, we explored the world of fractals. Then we introduced
the concept of random numbers. These are in fact used in machine learning for model
development and testing, so the chapter ended with an example of defining and solving a
mathematical problem using differential equations with partial derivatives.

In the next chapter, finally we'll start to see TensorFlow in action right in the field for which
it was developed – in machine learning, solving complex problems such as classification and
data clustering.



3
Starting with Machine Learning

In this chapter, we will cover the following topics:

Linear regression
The MNIST dataset
Classifiers
The nearest neighbor algorithm
Data clustering
The k-means algorithm

The linear regression algorithm
In this section, we begin our exploration of machine learning techniques with the linear
regression algorithm. Our goal is to build a model by which to predict the values of a
dependent variable from the values of one or more independent variables.

The relationship between these two variables is linear; that is, if y is the dependent variable
and x the independent, then the linear relationship between the two variables will look like
this: y = Ax + b.

The linear regression algorithm adapts to a great variety of situations; for its versatility, it is
used extensively in the field of applied sciences, for example, biology and economics.

Furthermore, the implementation of this algorithm allows us to introduce in a totally clear
and understandable way the two important concepts of machine learning: the cost function
and the gradient descent algorithms.
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Data model
The first crucial step is to build our data model. We mentioned earlier that the relationship 
between our variables is linear, that is: y = Ax + b, where A and b are constants. To test
our algorithm, we need data points in a two-dimensional space.

We start by importing the Python library NumPy:

    import numpy as np

Then we define the number of points we want to draw:

    number_of_points = 500

We initialize the following two lists:

    x_point = []
    y_point = []

These points will contain the generated points.

We then set the two constants that will appear in the linear relation of y with x:

    a = 0.22
    b = 0.78

Via NumPy's random.normal function, we generate 300 random points around the
regression equation y = 0.22x + 0.78:

    for i in range(number_of_points):
        x = np.random.normal(0.0,0.5)
        y = a*x + b +np.random.normal(0.0,0.1)
        x_point.append([x])
        y_point.append([y])

Finally, view the generated points by matplotlib:

    import matplotlib.pyplot as plt
    plt.plot(x_point,y_point, 'o', label='Input Data')
    plt.legend()
    plt.show()
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Linear regression: The data model

Cost functions and gradient descent
The machine learning algorithm that we want to implement with TensorFlow must predict
values of y as a function of x data according to our data model. The linear regression
algorithm will determine the values of the constants A and b (fixed for our data model),
which are then the true unknowns of the problem.

The first step is to import the tensorflow library:

    import tensorflow as tf
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Then define the A and b unknowns, using the TensorFlow tf.Variable:

    A = tf.Variable(tf.random_uniform([1], -1.0, 1.0))

The unknown factor A was initialized using a random value between -1 and 1, while the 
variableb is initially set to zero:

    b = tf.Variable(tf.zeros([1]))

So we write the linear relationship that binds y to x:

    y = A * x_point + b

Now we will introduce, this cost function: that has parameters containing a pair of values A
and b to be determined which returns a value that estimates how well the parameters are
correct. In this example, our cost function is mean square error:

    cost_function = tf.reduce_mean(tf.square(y - y_point))

It provides an estimate of the variability of the measures, or more precisely, of the
dispersion of values around the average value; a small value of this function corresponds to
a best estimate for the unknown parameters A and b.

To minimize cost_function, we use an optimization algorithm with the gradient descent.
Given a mathematical function of several variables, gradient descent allows to find a local
minimum of this function. The technique is as follows:

Evaluate, at an arbitrary first point of the function's domain, the function itself
and its gradient. The gradient indicates the direction in which the function tends
to a minimum.
Select a second point in the direction indicated by the gradient. If the function for
this second point has a value lower than the value calculated at the first point, the
descent can continue.
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You can refer to the following figure for a visual explanation of the algorithm:

The gradient descent algorithm

We also remark that the gradient descent is only a local function minimum, but it can also be 
used in the search for a global minimum, randomly choosing a new start point once it has
found a local minimum and repeating the process many times. If the number of minima of
the function is limited, and there are very high number of attempts, then there is a good
chance that sooner or later the global minimum will be identified.
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Using TensorFlow, the application of this algorithm is very simple. The instruction are as
follows:

    optimizer = tf.train.GradientDescentOptimizer(0.5)

Here 0.5 is the learning rate of the algorithm.

The learning rate determines how fast or slow we move towards the optimal weights. If it is
very large, we skip the optimal solution, and if it is too small, we need too many iterations
to converge to the best values.

An intermediate value (0.5) is provided, but it must be tuned in order to improve the
performance of the entire procedure.

We define train as the result of the application of the cost_function (optimizer),
through its minimize function:

    train = optimizer.minimize(cost_function)

Testing the model
Now we can test the algorithm of gradient descent on the data model you created earlier.
As usual, we have to initialize all the variables:

    model = tf.initialize_all_variables()

So we build our iteration (20 computation steps), allowing us to determine the best values
of A and b, which define the line that best fits the data model. Instantiate the evaluation
graph:

    with tf.Session() as session:

We perform the simulation on our model:

            session.run(model)
            for step in range(0,21):

For each iteration, we execute the optimization step:

                    session.run(train)

Every five steps, we print our pattern of dots:

                    if (step % 5) == 0:
                            plt.plot(x_point,y_point,'o',
                                     label='step = {}'
                                     .format(step))
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And the straight lines are obtained by the following command:

                            plt.plot(x_point,
                                     session.run(A) *
                                     x_point +
                                     session.run(B))
                            plt.legend()
                            plt.show()

The following figure shows the convergence of the implemented algorithm:

Linear regression : start computation (step = 0)
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After just five steps, we can already see (in the next figure) a substantial improvement in the
fit of the line:

Linear regression: situation after 5 computation steps

The following (and final) figure shows the definitive result after 20 steps. We can see the
efficiency of the algorithm used, with the straight line efficiency perfectly across the cloud
of points.
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Linear regression: final result

Finally we report, to further our understanding, the complete code:

    import numpy as np
    import matplotlib.pyplot as plt
    import tensorflow as tf
    number_of_points = 200
    x_point = []
    y_point = []
    a = 0.22
    b = 0.78
    for i in range(number_of_points):
        x = np.random.normal(0.0,0.5)
        y = a*x + b +np.random.normal(0.0,0.1)
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        x_point.append([x])
        y_point.append([y])
    plt.plot(x_point,y_point, 'o', label='Input Data')
    plt.legend()
    plt.show()
    A = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
    B = tf.Variable(tf.zeros([1]))
    y = A * x_point + B
    cost_function = tf.reduce_mean(tf.square(y - y_point))
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    train = optimizer.minimize(cost_function)
    model = tf.initialize_all_variables()
    with tf.Session() as session:
            session.run(model)
            for step in range(0,21):
                    session.run(train)
                    if (step % 5) == 0:
                            plt.plot(x_point,y_point,'o',
                                     label='step = {}'
                                     .format(step))
                            plt.plot(x_point,
                                     session.run(A) *
                                     x_point +
                                     session.run(B))
                            plt.legend()
                            plt.show()

The MNIST dataset
The MNIST dataset (available at h t t p : / / y a n n . l e c u n . c o m / e x d b / m n i s t /), is widely used
for training and testing in the field of machine learning, and we will use it in the examples
of this book. It contains black and white images of handwritten digits from 0 to 9.

http://yann.lecun.com/exdb/mnist/
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The data set is divided into two groups: 60,000 to train the model and an additional 10,000
to test it. The original images, in black and white, were normalized to fit into a box of size
28×28 pixels and centered by calculating the center of mass of the pixels. The following
figure represents how the digits could be represented in the MNIST dataset:

MNIST digit sampling
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Each MNIST data point is an array of numbers describing how dark each pixel is. For
example, for the following digit (the digit 1), we could have:

Pixel representation of the digit 1
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Downloading and preparing the data
The following code imports the MNIST data files that we are going to classify. I am using a
script from Google that can be downloaded from:

h t t p s : / / g i t h u b . c o m / t e n s o r f l o w / t e n s o r f l o w / b l o b / r 0 . 7 / t e n s o r f l o w / e x a m p l e s /

t u t o r i a l s / m n i s t / i n p u t _ d a t a . p y. This must be run in the same folder where the files
are located.

Now we will show how to load and display the data:

    import input_data
    import numpy as np
    import matplotlib.pyplot as plt

Using input_data, we load the data sets:

    mnist_images = input_data.read_data_sets\
                   ("MNIST_data/",\
                    one_hot=False)
    train.next_batch(10) returns the first 10 images :
    pixels,real_values = mnist_images.train.next_batch(10)

This also returns two lists: the matrix of the pixels loaded and the list that contains the real
values loaded:

    print "list of values loaded ",real_values
    example_to_visualize = 5
    print "element N° " + str(example_to_visualize + 1)\
                        + " of the list plotted"
>>
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
list of values loaded  [7 3 4 6 1 8 1 0 9 8]
element N 6 of the list plotted
>>

While displaying an element, we can use matplotlib, as follows:

    image = pixels[example_to_visualize,:]
    image = np.reshape(image,[28,28])
    plt.imshow(image)
    plt.show()

https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/mnist/input_data.py
https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/mnist/input_data.py
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Here is the result:

A MNIST image of the number eight

Classifiers
In the context of machine learning, the term classification identifies an algorithmic procedure
that assigns each new input datum (instance) to one of the possible categories (classes). If we
consider only two classes, we talk about binary classification; otherwise we have a multi-
class classification.
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The classification falls into the supervised learning category, which permits us to classify new
instances based on the so-called training set. The basic steps to follow to resolve a
supervised classification problem are as follows:

Build the training examples in order to represent the actual context and1.
application on which to accomplish the classification.
Choose the classifier and the corresponding algorithm implementation.2.
Train the algorithm on the training set and set any control parameters through3.
validation.
Evaluate the accuracy and performance of the classifier by applying a set of new4.
instances (test set).

The nearest neighbor algorithm
The K-nearest neighbor (KNN) is a supervised learning algorithm for both classification or
regression. It is a system that assigns the class of the sample tested according to its distance
from the objects stored in the memory.

The distance, d, is defined as the Euclidean distance between two points:

Here n is the dimension of the space. The advantage of this method of classification is the
ability to classify objects whose classes are not linearly separable. It is a stable classifier, given
that small perturbations of the training data do not significantly affect the results obtained. The
most obvious disadvantage, however, is that it does not provide a true mathematical model;
instead, for every new classification, it should be carried out by adding the new data to all
initial instances and repeating the calculation procedure for the selected K value.
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Moreover, it requires a fairly high amount of data to make realistic predictions and is
sensitive to the noise of the analyzed data.

In the next example, we will implement the KNNalgorithm using the MNIST data set.

Building the training set
Let's start with the import libraries needed for the simulation:

    import numpy as np
    import tensorflow as tf
    import input_data

To construct the data model for the training set, use the input_data.read_data_sets
function, introduced earlier:

    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

In our example we will take training phase consisting of 100 MNIST images:

    train_pixels,train_list_values = mnist.train.next_batch(100)

While we test our algorithm for 10 images:

    test_pixels,test_list_of_values  = mnist.test.next_batch(10)

Finally, we define the tensors train_pixel_tensor and test_pixel_tensor we use to
construct our classifier:

    train_pixel_tensor = tf.placeholder\
                         ("float", [None, 784])
    test_pixel_tensor = tf.placeholder\
                        ("float", [784])

Cost function and optimization
The cost function is represented by the distance in terms of pixels:

    distance = tf.reduce_sum\
               (tf.abs\
                (tf.add(train_pixel_tensor, \
                        tf.neg(test_pixel_tensor))), \
                reduction_indices=1)
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The tf.reduce function sum computes the sum of elements across the dimensions of a
tensor. For example (from the TensorFlow on-line manual):

    # 'x' is [[1, 1, 1]
    #         [1, 1, 1]]
    tf.reduce_sum(x) ==> 6
    tf.reduce_sum(x, 0) ==> [2, 2, 2]
    tf.reduce_sum(x, 1) ==> [3, 3]
    tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
    tf.reduce_sum(x, [0, 1]) ==> 6

Finally, to minimize the distance function, we use arg_min , which returns the index with
the smallest distance (nearest neighbor):

    pred = tf.arg_min(distance, 0)

Testing and algorithm evaluation
Accuracy is a parameter that helps us to compute the final result of the classifier:

    accuracy = 0

Initialize the variables:

    init = tf.initialize_all_variables()

Start the simulation:

    with tf.Session() as sess:
        sess.run(init)
        for i in range(len(test_list_of_values)):

Then we evaluate the nearest neighbor index, using the pred function, defined earlier:

    nn_index = sess.run(pred,\
        feed_dict={train_pixel_tensor:train_pixels,\
        test_pixel_tensor:test_pixels[i,:]})

Finally, we find the nearest neighbor class label and compare it to its true label:

            print "Test N° ", i,"Predicted Class: ", \
        np.argmax(train_list_values[nn_index]),\
        "True Class: ", np.argmax(test_list_of_values[i])
            if np.argmax(train_list_values[nn_index])\
        == np.argmax(test_list_of_values[i]):
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Then we evaluate and report the accuracy of the classifier:

                accuracy += 1./len(test_pixels)
        print "Result = ", accuracy

As we can see, each element of the training set is correctly classified. The result of the
simulation shows the predicted class with the real class, and finally the total value of the
simulation is reported:

>>>
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
Test N°  0 Predicted Class:  7 True Class:  7
Test N°  1 Predicted Class:  2 True Class:  2
Test N°  2 Predicted Class:  1 True Class:  1
Test N°  3 Predicted Class:  0 True Class:  0
Test N°  4 Predicted Class:  4 True Class:  4
Test N°  5 Predicted Class:  1 True Class:  1
Test N°  6 Predicted Class:  4 True Class:  4
Test N°  7 Predicted Class:  9 True Class:  9
Test N°  8 Predicted Class:  6 True Class:  5
Test N°  9 Predicted Class:  9 True Class:  9
Result =  0.9
>>>

The result is not 100% accurate; the reason is that it lies in a wrong evaluation of the test no.
8 instead of 5, the classifier has rated 6.

Finally, we report the complete code for KNN classification:

    import numpy as np
    import tensorflow as tf
    import input_data
    #Build the Training Set

    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    train_pixels,train_list_values = mnist.train.next_batch(100)
    test_pixels,test_list_of_values  = mnist.test.next_batch(10)
    train_pixel_tensor = tf.placeholder\
                         ("float", [None, 784])
    test_pixel_tensor = tf.placeholder\
                         ("float", [784])
    #Cost Function and distance optimization
    distance = tf.reduce_sum\
               (tf.abs\
                (tf.add(train_pixel_tensor, \
                        tf.neg(test_pixel_tensor))), \
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                reduction_indices=1)
    pred = tf.arg_min(distance, 0)
    # Testing and algorithm evaluation
    accuracy = 0.
    init = tf.initialize_all_variables()
    with tf.Session() as sess:
        sess.run(init)
        for i in range(len(test_list_of_values)):
            nn_index = sess.run(pred,\
        feed_dict={train_pixel_tensor:train_pixels,\
        test_pixel_tensor:test_pixels[i,:]})
            print "Test N° ", i,"Predicted Class: ", \
        np.argmax(train_list_values[nn_index]),\
        "True Class: ", np.argmax(test_list_of_values[i])
            if np.argmax(train_list_values[nn_index])\
        == np.argmax(test_list_of_values[i]):
                accuracy += 1./len(test_pixels)
        print "Result = ", accuracy

Data clustering
A clustering problem consists in the selection and grouping of homogeneous items from a
set of initial data. To solve this problem, we must:

Identify a resemblance measure between elements
Find out if there are subsets of elements that are similar to the measure chosen

The algorithm determines which elements form a cluster and what degree of similarity
unites them within the cluster.

The clustering algorithms fall into the unsupervised methods, because we do not assume any
prior information on the structures and characteristics of the clusters.

The k-means algorithm
One of the most common and simple clustering algorithms is k-means, which allows
subdividing groups of objects into k partitions on the basis of their attributes. Each cluster is
identified by a point or centroid average.
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The algorithm follows an iterative procedure:

Randomly select K points as the initial centroids.1.
Repeat.2.
Form K clusters by assigning all points to the closest centroid.3.
Recompute the centroid of each cluster.4.
Until the centroids don't change.5.

The popularity of the k-means comes from its convergence speed and its ease of implementation.
In terms of the quality of the solutions, the algorithm does not guarantee achieving the
global optimum. The quality of the final solution depends largely on the initial set of clusters
and may, in practice, to obtain a much worse the global optimum solution. Since the
algorithm is extremely fast, you can apply it several times and produce solutions from
which you can choose among most satisfying one. Another disadvantage of the algorithm is
that it requires you to choose the number of clusters (k) to find.

If the data is not naturally partitioned, you will end up getting strange results. Furthermore,
the algorithm works well only when there are identifiable spherical clusters in the data.

Let us now see how to implement the k-means by the TensorFlow library.

Building the training set
Import all the necessary libraries to our simulation:

    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    import pandas as pd

Pandas is an open source, easy-to-use data structure, and data analysis
tool for the Python programming language. To install it, type the
following command:

    sudo pip install pandas
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We must define the parameters of our problem. The total number of points that we want to
cluster is 1000 points:

    num_vectors = 1000

The number of partitions you want to achieve by all initial:

    num_clusters = 4

We set the number of computational steps of the k-means algorithm:

    num_steps = 100

We initialize the initial input data structures:

    x_values = []
    y_values = []
    vector_values = []

The training set creates a random set of points, which is why we use the random.normal
NumPy function, allowing us to build the x_values and y_values vectors:

    for i in xrange(num_vectors):
      if np.random.random() > 0.5:
        x_values.append(np.random.normal(0.4, 0.7))
        y_values.append(np.random.normal(0.2, 0.8))
      else:
        x_values.append(np.random.normal(0.6, 0.4))
        y_values.append(np.random.normal(0.8, 0.5))

We use the Python zip function to obtain the complete list of vector_values:

    vector_values = zip(x_values,y_values)

Then vector_values is converted into a constant, usable by TensorFlow:

    vectors = tf.constant(vector_values)
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We can see our training set for the clustering algorithm with the following commands:

    plt.plot(x_values,y_values, 'o', label='Input Data')
    plt.legend()
    plt.show()

The training set for k-means
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After randomly building the training set, we have to generate (k = 4) centroid, then
determine an index using tf.random_shuffle:

    n_samples = tf.shape(vector_values)[0]
    random_indices = tf.random_shuffle(tf.range(0, n_samples))

By adopting this procedure, we are able to determine four random indices:

    begin = [0,]
    size = [num_clusters,]
    size[0] = num_clusters

They have their own indexes of our initial centroids:

    centroid_indices = tf.slice(random_indices, begin, size)
    centroids = tf.Variable(tf.gather\
                (vector_values, centroid_indices))

Cost functions and optimization
The cost function we want to minimize for this problem is again the Euclidean distance
between two points:

In order to manage the tensors defined previously, vectors and centroids, we use the
TensorFlow function expand_dims, which automatically expands the size of the two
arguments:

    expanded_vectors = tf.expand_dims(vectors, 0)
    expanded_centroids = tf.expand_dims(centroids, 1)

This function allows you to standardize the shape of the two tensors, in order to evaluate
the difference by the tf.sub method:

    vectors_subtration = tf.sub(expanded_vectors,expanded_centroids)
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Finally, we build the euclidean_distances cost function, using the tf.reduce_sum 
function, which computes the sum of elements across the dimensions of a tensor, while the
tf.square function computes the square of the vectors_subtration element-wise
tensor:

    euclidean_distances = tf.reduce_sum(tf.square\
                          (vectors_subtration), 2)
    assignments = tf.to_int32(tf.argmin(euclidean_distances, 0))

Here assignments is the value of the index with the smallest distance across the tensor
euclidean_distances. Let us now turn to the optimization phase, the purpose of which
is to improve the choice of centroids, on which the construction of the clusters depends. We
partition the vectors (which is our training set) into num_clusters tensors, using indices
from assignments.

The following code takes the nearest indices for each sample, and grabs those out as
separate groups using tf.dynamic_partition:

    partitions = tf.dynamic_partition\
                 (vectors, assignments, num_clusters)

Finally, we update the centroids, using tf.reduce_mean on a single group to find the
average of that group, forming its new centroid:

update_centroids = tf.concat(0, \
                              [tf.expand_dims\
                          (tf.reduce_mean(partition, 0), 0)\
                               for partition in partitions])

To form the update_centroids tensor, we use tf.concat to concatenate the single one.

Testing and algorithm evaluation
It's time to test and evaluate the algorithm. The first procedure is to initialize all the
variables and instantiate the evaluation graph:

    init_op = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init_op)
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Now we start the computation:

    for step in xrange(num_steps):
       _, centroid_values, assignment_values =\
          sess.run([update_centroids,\
                    centroids,\
                    assignments])

To display the result, we implement the following function:

    display_partition(x_values,y_values,assignment_values)

This takes the x_values and y_values vectors of the training set, and the
assignemnt_values vector, to draw the clusters.

The code for this visualization function is as follows:

    def display_partition(x_values,y_values,assignment_values):
        labels = []
        colors = ["red","blue","green","yellow"]
        for i in xrange(len(assignment_values)):
          labels.append(colors[(assignment_values[i])])
        color = labels
        df = pd.DataFrame\
             (dict(x =x_values,y = y_values ,color = labels ))
        fig, ax = plt.subplots()
        ax.scatter(df['x'], df['y'], c=df['color'])
        plt.show()

It associates to each cluster its color by means of the following data structure:

    colors = ["red","blue","green","yellow"]

It then draws them through the scatter function of matplotlib:

    ax.scatter(df['x'], df['y'], c=df['color'])
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Let's display the result:

Final result of the k-means algorithm

Here is the complete code of the k-means algorithm:

    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import tensorflow as tf
    def display_partition(x_values,y_values,assignment_values):
        labels = []
        colors = ["red","blue","green","yellow"]
        for i in xrange(len(assignment_values)):
          labels.append(colors[(assignment_values[i])])
        color = labels
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        df = pd.DataFrame\
                (dict(x =x_values,y = y_values ,color = labels ))
        fig, ax = plt.subplots()
        ax.scatter(df['x'], df['y'], c=df['color'])
        plt.show()
    num_vectors = 2000
    num_clusters = 4
    n_samples_per_cluster = 500
    num_steps = 1000
    x_values = []
    y_values = []
    vector_values = []
    #CREATE RANDOM DATA
    for i in xrange(num_vectors):
      if np.random.random() > 0.5:
        x_values.append(np.random.normal(0.4, 0.7))
        y_values.append(np.random.normal(0.2, 0.8))
      else:
        x_values.append(np.random.normal(0.6, 0.4))
        y_values.append(np.random.normal(0.8, 0.5))
    vector_values = zip(x_values,y_values)
    vectors = tf.constant(vector_values)
    n_samples = tf.shape(vector_values)[0]
    random_indices = tf.random_shuffle(tf.range(0, n_samples))
    begin = [0,]
    size = [num_clusters,]
    size[0] = num_clusters
    centroid_indices = tf.slice(random_indices, begin, size)
    centroids = tf.Variable(tf.gather(vector_values, centroid_indices))
    expanded_vectors = tf.expand_dims(vectors, 0)
    expanded_centroids = tf.expand_dims(centroids, 1)
    vectors_subtration = tf.sub(expanded_vectors,expanded_centroids)
    euclidean_distances =
                   \tf.reduce_sum(tf.square(vectors_subtration), 2)
    assignments = tf.to_int32(tf.argmin(euclidean_distances, 0))
    partitions = [0, 0, 1, 1, 0]
    num_partitions = 2
    data = [10, 20, 30, 40, 50]
    outputs[0] = [10, 20, 50]
    outputs[1] = [30, 40]
    partitions = tf.dynamic_partition(vectors, assignments, num_clusters)
    update_centroids = tf.concat(0, [tf.expand_dims
(tf.reduce_mean(partition, 0), 0)\
                                  for partition in partitions])
    init_op = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init_op)
    for step in xrange(num_steps):
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       _, centroid_values, assignment_values =\
          sess.run([update_centroids,\
                    centroids,\
                    assignments])
    display_partition(x_values,y_values,assignment_values)
    plt.plot(x_values,y_values, 'o', label='Input Data')
    plt.legend()
    plt.show()

Summary
In this chapter, we began to explore the potential of TensorFlow for some typical problems
in Machine Learning. With the linear regression algorithm, the important concepts of cost
function and optimization using gradient descent were explained. We then described the
dataset MNIST of handwritten digits. We also implemented a multiclass classifier using the
nearest neighbor algorithm, which falls into the Machine Learning supervised
learning category. Then the chapter concluded with an example of unsupervised learning, by
implementing the k-means algorithm for solving a data clustering problem.

In the next chapter, we will introduce neural networks. These are mathematical models that
represent the interconnection between elements defined as artificial neurons, namely
mathematical constructs that mimic the properties of living neurons.

We'll also implement some neural network learning models using TensorFlow.



4
Introducing Neural Networks

In this chapter, we will cover the following topics:

What are neural networks?
Single Layer Perceptron
Logistic regression
Multi Layer Perceptron
Multi Layer Perceptron classification
Multi Layer Perceptron function approximation

What are artificial neural networks?
An artificial neural network (ANN) is an information processing system whose operating
mechanism is inspired by biological neural circuits. Thanks to their characteristics, neural
networks are the protagonists of a real revolution in machine learning systems and more
specifically in the context of artificial intelligence. An ANN possesses many simple
processing units variously connected to each other, according to various architectures. If we
look at the schema of an ANN reported later, it can be seen that the hidden units
communicate with the external layer, both in input and output, while the input and output
units communicate only with the hidden layer of the network.
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Each unit or node simulates the role of the neuron in biological neural networks. Each node,
said artificial neuron, has a very simple operation: it becomes active if the total quantity of
signal that it receives exceeds its activation threshold, defined by the so-called activation
function. If a node becomes active, it emits a signal that is transmitted along the transmission
channels up to the other unit to which it is connected. Each connection point acts as a filter
that converts the message into an inhibitory or excitatory signal, increasing or decreasing
the intensity according to their individual characteristics. The connection points simulate
the biological synapses and have the fundamental function of weighing the intensity of the
transmitted signals, by multiplying them by the weights whose values depend on the
connection itself.

ANN schematic diagram
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Neural network architectures
The way to connect the nodes, the total number of layers, that is the levels of nodes between
input and outputs and the number of neurons per layer-all these define the architecture of a 
neural network. For example, in multilayer networks (we introduce these in the second
part of this chapter), one can identify the artificial neurons of layers such that:

Each neuron is connected with all those of the next layer
There are no connections between neurons belonging to the same layer
The number of layers and of neurons per layer depends on the problem to be
solved

Now we start our exploration of neural network models, introducing the most simple
neural network model: the Single Layer Perceptron or the so-called Rosenblatt's Perceptron.

Single Layer Perceptron
The Single Layer Perceptron was the first neural network model, proposed in 1958 by Frank
Rosenblatt. In this model, the content of the local memory of the neuron consists of a vector
of weights, W = (w1, w2,......, wn). The computation is performed over the
calculation of a sum of the input vector X =(x1, x2,......, xn), each of which is
multiplied by the corresponding element of the vector of the weights; then the value
provided in the output (that is, a weighted sum) will be the input of an activation function.
This function returns 1 if the result is greater than a certain threshold, otherwise it returns
-1. In the following figure, the activation function is the so-called sign function:

             +1        x > 0
    sign(x)= −1        otherwise
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It is possible to use other activation functions, preferably non-linear (such as the sigmoid
function, which we will see in the next section). The learning procedure of the net is
iterative: it slightly modifies for each learning cycle (called epoch) the synaptic weights by
using a selected set called a training set. At each cycle, the weights must be modified to
minimize a cost function, which is specific to the problem under consideration. Finally,
when the perceptron has been trained on the training set, it will be tested on other inputs
(the test set) in order to verify its capacity for generalization.

Schema of a Rosemblatt's Perceptron

Let us now see how to implement a single layer neural network for an image classification
problem using TensorFlow.

The logistic regression
This algorithm has nothing to do with the canonical linear regression we saw in          
Chapter 3, Starting with Machine Learning, but it is an algorithm that allows us to solve
problems of supervised classification. In fact, to estimate the dependent variable, now we
make use of the so-called logistic function or sigmoid. It is precisely because of this feature
we call this algorithm logistic regression. The sigmoid function has the following pattern:
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Sigmoid function

As we can see, the dependent variable takes values strictly between 0 and 1 that is precisely
what serves us. In the case of logistic regression, we want our function to tell us what's the
probability of belonging to a particular element of our class. We recall again that the
supervised learning by the neural network is configured as an iterative process of optimization
of the weights; these are then modified on the basis of the network's performance of the
training set. Indeed the aim is to minimize the loss function, which indicates the degree to
which the behavior of the network deviates from the desired one. The performance of the
network is then verified on a test set, consisting of images other than those of trained.
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The basic steps of training that we're going to implement are as follows:

The weights are initialized with random values at the beginning of the training.
For each element of the training set the error is calculated, that is, the difference
between the desired output and the actual output. This error is used to adjust the
weights.
The process is repeated, resubmitting to the network, in a random order, all the
examples of the training set until the error made on the entire training set is not
less than a certain threshold, or until the maximum number of iterations is
reached.

Let us now see in detail how to implement the logistic regression with TensorFlow. The 
problem we want to solve is to classify images from the MNIST dataset, which as explained
in the Chapter 3, Starting with Machine Learning is a database of handwritten numbers.

TensorFlow implementation
To implementTensorFlow, we need to perform the following steps:

First of all, we have to import all the necessary libraries:1.

    import input_data
    import tensorflow as tf
    import matplotlib.pyplot as plt

We use the input_data.read function introduced in Chapter 3, Starting with2.
Machine Learning, in the MNIST dataset section, to upload the images to our
problem:

    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

Then we set the total number of epochs for the training phase:3.

    training_epochs = 25

We must also define other parameters that are necessary to build a model:4.

    learning_rate = 0.01
    batch_size = 100
    display_step = 1

Now we move to the construction of the model.5.
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Building the model
Define x as the input tensor; it represents the MNIST data image of size 28 x 28 = 784
pixels:

    x = tf.placeholder("float", [None, 784])

We recall that our problem consists of assigning a probability value for each of the possible
classes of membership (the numbers from 0 to 9). At the end of this calculation, we will use
a probability distribution, which gives us the value of what is confident with our prediction.

So the output we're going to get will be an output tensor with 10 probabilities, each one
corresponding to a digit (of course the sum of probabilities must be one):

    y = tf.placeholder("float", [None, 10])

To assign probabilities to each image, we will use the so-called softmax activation function.

The softmax function is specified in two main steps:

Calculate the evidence that a certain image belongs to a particular class
Convert the evidence into probabilities of belonging to each of the 10 possible
classes

To evaluate the evidence, we first define the weights input tensor as W:

    W = tf.Variable(tf.zeros([784, 10]))

For a given image, we can evaluate the evidence for each class i by simply multiplying the
tensor W with the input tensor x. Using TensorFlow, we should have something like the
following:

    evidence = tf.matmul(x, W)

In general, the models include an extra parameter representing the bias, which indicates a
certain degree of uncertainty. In our case, the final formula for the evidence is as follows:

    evidence = tf.matmul(x, W) + b

It means that for every i (from 0 to 9) we have a Wi matrix elements 784 (28x28), where
each element j of the matrix is multiplied by the corresponding component j of the input
image (784 parts) is added and the corresponding bias element bi.

So to define the evidence, we must define the following tensor of biases:

    b = tf.Variable(tf.zeros([10]))
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The second step is to finally use the softmax function to obtain the output vector of
probabilities, namely activation:

    activation = tf.nn.softmax(tf.matmul(x, W) + b)

TensorFlow's tf.nn.softmax function provides a probability-based output from the input
evidence tensor. Once we implement the model, we can specify the necessary code to find
the weights W and biases b network through the iterative training algorithm. In each
iteration, the training algorithm takes the training data, applies the neural network, and
compares the result with the expected.

TensorFlow provides many other activation functions. See h t t p s : / / w w w .
t e n s o r f l o w . o r g / v e r s i o n s / r 0 . 8 / a p i _ d o c s / i n d e x . h t m l for better
references.

In order to train our model and know when we have a good one, we must define how to
define the accuracy of our model. Our goal is to try to get values of parameters W and b that
minimize the value of the metric that indicates how bad the model is.

Different metrics calculated degree of error between the desired output and the training
data outputs. A common measure of error is the mean squared error or the Squared
Euclidean Distance. However, there are some research findings that suggest to use other
metrics to a neural network like this.

In this example, we use the so-called cross-entropy error function. It is defined as:

    cross_entropy = y*tf.lg(activation)

In order to minimize cross_entropy, we can use the following combination of
tf.reduce_mean and tf.reduce_sum to build the cost function:

    cost = tf.reduce_mean\
             (-tf.reduce_sum\
               (cross_entropy, reduction_indices=1))

Then we must minimize it using the gradient descent optimization algorithm:

    optimizer = tf.train.GradientDescentOptimizer\
                     (learning_rate).minimize(cost)

Few lines of code to build a neural net model!

https://www.tensorflow.org/versions/r0.8/api_docs/index.html
https://www.tensorflow.org/versions/r0.8/api_docs/index.html
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Launch the session
It's time to build the session and launch our neural net model.

We fix the following lists to visualize the training session:

    avg_set = []
    epoch_set=[]

Then we initialize the TensorFlow variables:

    init = tf.initialize_all_variables()

Start the session:

    with tf.Session() as sess:
        sess.run(init)

As explained, each epoch is a training cycle:

        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)

Then we loop over all the batches:

            for i in range(total_batch):
                batch_xs, batch_ys = \
                                mnist.train.next_batch(batch_size)

Fit the training using the batch data:

                sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})

Compute the average loss running the train_step function with the given image values
(x) and the real output (y_):

                avg_cost += sess.run\
                            (cost, feed_dict={x: batch_xs,\
                                    y: batch_ys})/total_batch

During computation, we display a log per epoch step:

            if epoch % display_step == 0:
                print "Epoch:",\
                      '%04d' % (epoch+1),\
                      "cost=","{:.9f}".format(avg_cost)
        print " Training phase finished"
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Let's get the accuracy of our mode. It is correct if the index with the highest y value is the
same as in the real digit vector the mean of the correct_prediction gives us the
accuracy. We need to run the accuracy function with our test set (mnist.test).

We use the key images and labels for x and y:

        correct_prediction = tf.equal\
                               (tf.argmax(activation, 1),\
                                tf.argmax(y, 1))
        accuracy = tf.reduce_mean\
                           (tf.cast(correct_prediction, "float"))
       print "MODEL accuracy:", accuracy.eval({x: mnist.test.images,\
                                       y: mnist.test.labels})

Test evaluation
We previously showed the training phase and for each epoch we have printed the relative
cost function:

Python 2.7.10 (default, Oct 14 2015, 16:09:02)  [GCC 5.2.1 20151010] on
linux2 Type "copyright", "credits" or "license()" for more information. >>>
======================= RESTART ============================
>>>
Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
Epoch: 0001 cost= 1.174406662
Epoch: 0002 cost= 0.661956009
Epoch: 0003 cost= 0.550468774
Epoch: 0004 cost= 0.496588717
Epoch: 0005 cost= 0.463674555
Epoch: 0006 cost= 0.440907706
Epoch: 0007 cost= 0.423837747
Epoch: 0008 cost= 0.410590841
Epoch: 0009 cost= 0.399881751
Epoch: 0010 cost= 0.390916621
Epoch: 0011 cost= 0.383320325
Epoch: 0012 cost= 0.376767031
Epoch: 0013 cost= 0.371007620
Epoch: 0014 cost= 0.365922904
Epoch: 0015 cost= 0.361327561
Epoch: 0016 cost= 0.357258660
Epoch: 0017 cost= 0.353508228
Epoch: 0018 cost= 0.350164634
Epoch: 0019 cost= 0.347015593
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Epoch: 0020 cost= 0.344140861
Epoch: 0021 cost= 0.341420144
Epoch: 0022 cost= 0.338980592
Epoch: 0023 cost= 0.336655581
Epoch: 0024 cost= 0.334488012
Epoch: 0025 cost= 0.332488823
Training phase finished

As you can see, during the training phase the cost function is minimized. At the end of the
test, we show how accurate the implemented model is:

    Model Accuracy: 0.9475
    >>>

Finally, using the following lines of code, we can visualize the training phase of the net:

    plt.plot(epoch_set,avg_set, 'o',\
         label='Logistic Regression Training phase')
    plt.ylabel('cost')
    plt.xlabel('epoch')
    plt.legend()
    plt.show()

Training phase in logistic regression
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Source code
    # Import MINST data
    import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    import tensorflow as tf
    import matplotlib.pyplot as plt
    # Parameters
    learning_rate = 0.01
    training_epochs = 25
    batch_size = 100
    display_step = 1
    # tf Graph Input
    x = tf.placeholder("float", [None, 784])
    y = tf.placeholder("float", [None, 10])
    # Create model
    # Set model weights
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    # Construct model
    activation = tf.nn.softmax(tf.matmul(x, W) + b)
    # Minimize error using cross entropy
    cross_entropy = y*tf.log(activation)
    cost = tf.reduce_mean\
           (-tf.reduce_sum\
            (cross_entropy,reduction_indices=1))
    optimizer = tf.train.\
                GradientDescentOptimizer(learning_rate).minimize(cost)
    #Plot settings
    avg_set = []
    epoch_set=[]
    # Initializing the variables
    init = tf.initialize_all_variables()
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        # Training cycle
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = \
                          mnist.train.next_batch(batch_size)
                # Fit training using batch data
                sess.run(optimizer, \
                         feed_dict={x: batch_xs, y: batch_ys})
                # Compute average loss



Introducing Neural Networks

[ 107 ]

                avg_cost += sess.run(cost,feed_dict=\
                                         {x: batch_xs,\
                                          y: batch_ys})/total_batch
            # Display logs per epoch step
            if epoch % display_step == 0:
                print "Epoch:", '%04d' % (epoch+1),\
                      "cost=", "{:.9f}".format(avg_cost)
            avg_set.append(avg_cost)
            epoch_set.append(epoch+1)
        print "Training phase finished"
        plt.plot(epoch_set,avg_set, 'o',\
                 label='Logistic Regression Training phase')
        plt.ylabel('cost')
        plt.xlabel('epoch')
        plt.legend()
        plt.show()
        # Test model
        correct_prediction = tf.equal\
                            (tf.argmax(activation, 1),\
                             tf.argmax(y, 1))
        # Calculate accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
        print "Model accuracy:", accuracy.eval({x: mnist.test.images,\
                                                y: mnist.test.labels})

Multi Layer Perceptron
A more complex and efficient architecture is that of Multi Layer Perceptron (MLP). It is
substantially formed from multiple layers of perceptrons, and therefore by the presence of
at least one hidden layer, that is not connected either to the inputs or to the outputs of the
network:
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The MLP architecture

A network of this type is typically trained using supervised learning, according to the
principles outlined in the previous paragraph. In particular, a typical learning algorithm for
MLP networks is the so-called back propagation's algorithm.

The back propagation algorithm is a learning algorithm for neural
networks. It compares the output value of the system with the desired
value. On the basis of the difference thus calculated (namely, the error),
the algorithm modifies the synaptic weights of the neural network, by
progressively converging the set of output values of the desired ones.

It is important to note that in MLP networks, although you don't know the desired outputs
of the neurons of the hidden layers of the network, it is always possible to apply a
supervised learning method based on the minimization of an error function via the
application of gradient-descent techniques.

In the following example, we show the implementation with MLP for an image
classification problem (MNIST).
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Multi Layer Perceptron classification
Import the necessary libraries:

    import input_data
    import tensorflow as tf
    import matplotlib.pyplot as plt

Load the images to classify:

    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

Fix some parameters for the MLP model:

Learning rate of the net:

    learning_rate = 0.001

The epochs:

    training_epochs = 20

The number of images to classify:

    batch_size = 100
    display_step = 1

The number of neurons for the first layer:

    n_hidden_1 = 256

The number of neurons for the second layer:

    n_hidden_2 = 256

The size of the input (each image has 784 pixels):

    n_input = 784 # MNIST data input (img shape: 28*28)

The size of of the output classes:

    n_classes = 10
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It should therefore be noted that while for a given application, the input and output size is
perfectly defined, there are no strict criteria for how to define the number of hidden layers
and the number of neurons for each layer.

Every choice must be based on experience of similar applications, as in our case:

When increasing the number of hidden layers, we should also increase the size of
the training set that is necessary and also increase the number of connections to
be updated, during the learning phase. This results in an increase in the training
time.
Also, if there are too many neurons in the hidden layer, not only are there more
weights to be updated but the network also has a tendency to learn too much
from the training examples set, resulting in a poor generalization ability. But then if
the hidden neurons are too few, the network is not able to learn even with the
training set.

Build the model
The input layer is the x tensor [1x784], which represents the image to classify:

    x = tf.placeholder("float", [None, n_input])

The output tensor y is equal to the number of classes:

    y = tf.placeholder("float", [None, n_classes])

In the middle, we have two hidden layers. The first layer is constituted by the h tensor of
weights, whose size is [784x256], where 256 is the total number of nodes of the layer:

    h = tf.Variable(tf.random_normal([n_input, n_hidden_1]))

For layer 1, so we have to define the respective biases tensor:

    bias_layer_1 = tf.Variable(tf.random_normal([n_hidden_1]))

Each neuron receives the pixels of input image to be classified combined with the hij
weight connections and added to the respective values of the biases tensor:

    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x,h),bias_layer_1))
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It sends its output to the neurons of the next layer through the activation function. It
must be said that functions can be different from one neuron to another, but in practice,
however, we adopt a common feature for all the neurons, typically of the sigmoidal type.
Sometimes the output neurons are equipped with a linear activation function. It is
interesting to note that the activation functions of the neurons in the hidden layers cannot
be linear because, in this case, the MLP network would be equivalent to a network with two
layers and therefore no longer of the MLP type. The second layer must perform the same
steps as the first.

The second intermediate layer is represented by the shape of the weights tensor
[256x256]:

    w = tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]))

With the tensor of biases:

    bias_layer_2 = tf.Variable(tf.random_normal([n_hidden_2]))

Each neuron in this second layer receives inputs from the neurons of layer 1, combined with
the weight Wij connections and added to the respective biases of layer 2:

    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,w),bias_layer_2))

It sends its output to the next layer, namely the output layer:

    output = tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
    bias_output = tf.Variable(tf.random_normal([n_classes]))
    output_layer = tf.matmul(layer_2, output) + bias_output

The output layer receives as input n-stimuli (256) coming from layer 2, which is converted
to the respective classes of probability for each number.

As for the logistic regression, we then define the cost function:

    cost = tf.reduce_mean\
        (tf.nn.softmax_cross_entropy_with_logits\
    (output_layer, y))

The TensorFlow function tf.nn.softmax_cross_entropy_with_logits computes the
cost for a softmax layer. It is only used during training. The logits are the unnormalized log
probabilities output the model (the values output before the softmax normalization is
applied to them).
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The corresponding optimizer that minimizes the cost function is:

    optimizer = tf.train.AdamOptimizer\
          (learning_rate=learning_rate).minimize(cost)

tf.train.AdamOptimizer uses Kingma and Ba's Adam algorithm to control the learning
rate. Adam offers several advantages over the simple
tf.train.GradientDescentOptimizer. In fact, it uses a larger effective step size, and
the algorithm will converge to this step size without fine tuning.

A simple tf.train.GradientDescentOptimizer could equally be used in your MLP,
but would require more hyper parameter tuning before it could converge as quickly.

TensorFlow provides the optimizer base class to compute gradients for a
loss and apply gradients to variables. This class defines the API to add ops
to train a model. You never use this class directly, but instead instantiate
one of its sub classes. See h t t p s : / / w w w . t e n s o r f l o w . o r g / v e r s i o n s / r 0
. 8 / a p i _ d o c s / p y t h o n / t r a i n . h t m l # O p t i m i z e r to see the optimizer
implemented.

Launch the session
The following are the steps to launch the session:

Plot the settings:1.

    avg_set = []
    epoch_set=[]

Initialize the variables:2.

    init = tf.initialize_all_variables()

Launch the graph:3.

    with tf.Session() as sess:
        sess.run(init)

https://www.tensorflow.org/versions/r0.8/api_docs/python/train.html#Optimizer
https://www.tensorflow.org/versions/r0.8/api_docs/python/train.html#Optimizer
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Define the training cycle:4.

        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)

Loop over all the batches (100):5.

            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)

Fit training using the batch data:6.

                sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})

Compute the average loss:7.

                avg_cost += sess.run(cost,feed_dict={x: batch_xs,\
                    y: batch_ys})/total_batch
    Display logs per epoch step
            if epoch % display_step == 0:
                print "Epoch:", '%04d' % (epoch+1),\
              "cost=", "{:.9f}".format(avg_cost)
            avg_set.append(avg_cost)
            epoch_set.append(epoch+1)
        print "Training phase finished"

With these lines of codes, we plot the training phase:8.

        plt.plot(epoch_set,avg_set, 'o', label='MLP Training phase')
        plt.ylabel('cost')
        plt.xlabel('epoch')
        plt.legend()
        plt.show()

Finally, we can test the MLP model:9.

        correct_prediction = tf.equal(tf.argmax(output_layer, 1),\
                    tf.argmax(y, 1))
        evaluating its accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
        print "Model Accuracy:", accuracy.eval({x: mnist.test.images,\
                         y: mnist.test.labels})
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Here is the output result after 20 epochs:10.

Python 2.7.10 (default, Oct 14 2015, 16:09:02)  [GCC 5.2.1 20151010] on
linux2 Type "copyright", "credits" or "license()" for more information.
>>> ========================== RESTART ==============================
>>>
Succesfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /tmp/data/train-images-idx3-ubyte.gz
Succesfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Succesfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Succesfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
Epoch: 0001 cost= 1.723947845
Epoch: 0002 cost= 0.539266024
Epoch: 0003 cost= 0.362600502
Epoch: 0004 cost= 0.266637279
Epoch: 0005 cost= 0.205345784
Epoch: 0006 cost= 0.159139332
Epoch: 0007 cost= 0.125232637
Epoch: 0008 cost= 0.098572041
Epoch: 0009 cost= 0.077509963
Epoch: 0010 cost= 0.061127526
Epoch: 0011 cost= 0.048033808
Epoch: 0012 cost= 0.037297983
Epoch: 0013 cost= 0.028884999
Epoch: 0014 cost= 0.022818390
Epoch: 0015 cost= 0.017447586
Epoch: 0016 cost= 0.013652348
Epoch: 0017 cost= 0.010417282
Epoch: 0018 cost= 0.008079228
Epoch: 0019 cost= 0.006203546
Epoch: 0020 cost= 0.004961207
Training phase finished
Model Accuracy: 0.9775
>>>
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We show the training phase in the following figure:

Training phase in Multi Layer Perceptron

Source code
    # Import MINST data
    import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    import tensorflow as tf
    import matplotlib.pyplot as plt
    # Parameters
    learning_rate = 0.001
    training_epochs = 20
    batch_size = 100
    display_step = 1



Introducing Neural Networks

[ 116 ]

    # Network Parameters
    n_hidden_1 = 256 # 1st layer num features
    n_hidden_2 = 256 # 2nd layer num features
    n_input = 784 # MNIST data input (img shape: 28*28)
    n_classes = 10 # MNIST total classes (0-9 digits)
    # tf Graph input
    x = tf.placeholder("float", [None, n_input])
    y = tf.placeholder("float", [None, n_classes])
    #weights layer 1
    h = tf.Variable(tf.random_normal([n_input, n_hidden_1]))
    #bias layer 1
    bias_layer_1 = tf.Variable(tf.random_normal([n_hidden_1]))
    #layer 1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x,h),bias_layer_1))
    #weights layer 2
    w = tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]))
    #bias layer 2
    bias_layer_2 = tf.Variable(tf.random_normal([n_hidden_2]))
    #layer 2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,w),bias_layer_2))
    #weights output layer
    output = tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
    #biar output layer
    bias_output = tf.Variable(tf.random_normal([n_classes]))
    #output layer
    output_layer = tf.matmul(layer_2, output) + bias_output
    # cost function
    cost = tf.reduce_mean\
        (tf.nn.softmax_cross_entropy_with_logits(output_layer, y))
    # optimizer
    optimizer = tf.train.AdamOptimizer\
          (learning_rate=learning_rate).minimize(cost)
    #Plot settings
    avg_set = []
    epoch_set=[]
    # Initializing the variables
    init = tf.initialize_all_variables()
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        # Training cycle
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                # Fit training using batch data
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                sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
                # Compute average loss
                avg_cost += sess.run(cost, \
            feed_dict={x: batch_xs,\
                  y: batch_ys})/total_batch
            # Display logs per epoch step
            if epoch % display_step == 0:
                print "Epoch:", '%04d' % (epoch+1),\
              "cost=", "{:.9f}".format(avg_cost)
            avg_set.append(avg_cost)
            epoch_set.append(epoch+1)
        print "Training phase finished"
        plt.plot(epoch_set,avg_set, 'o', label='MLP Training phase')
        plt.ylabel('cost')
        plt.xlabel('epoch')
        plt.legend()
        plt.show()
        # Test model
        correct_prediction = tf.equal(tf.argmax(output_layer, 1),\
             tf.argmax(y, 1))
        # Calculate accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
        print "Model Accuracy:", accuracy.eval({x: mnist.test.images,\
y: mnist.test.labels})

Multi Layer Perceptron function approximation
In the following example, we implement an MLP network that will be able to learn the
trend of an arbitrary function f (x). In the training phase the network will have to learn
from a known set of points, that is x and f (x), while in the test phase the network will
deduct the values of f (x) only from the x values.

This very simple network will be built by a single hidden layer.

Import the necessary libraries:

    import tensorflow as tf
    import numpy as np
    import math, random
    import matplotlib.pyplot as plt
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We build the data model. The function to be learned will follow the trend of the cosine 
function, evaluated for 1000 points to which we add a very little random error (noise) to
reproduce a real case:

    NUM_points = 1000
    np.random.seed(NUM_points)
    function_to_learn = lambda x: np.cos(x) + \
           0.1*np.random.randn(*x.shape)

Our MLP network will be formed by a hidden layer of 10 neurons:

    layer_1_neurons = 10

The network learns for 100 points at a time to a total of 1500 learning cycles (epochs):

    batch_size = 100
    NUM_EPOCHS = 1500

Finally, we construct the training set and the test set:

    all_x contiene tutti i punti
    all_x = np.float32(np.random.uniform\
        (-2*math.pi, 2*math.pi,\
           (1, NUM_points))).T
    np.random.shuffle(all_x)
    train_size = int(900)

The first 900 points are in the training set:

    x_training = all_x[:train_size]
    y_training = function_to_learn(x_training)

The last 100 will be in the validation set:

    x_validation = all_x[train_size:]
    y_validation = function_to_learn(x_validation)
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Using matplotlib, we display these sets:

    plt.figure(1)
    plt.scatter(x_training, y_training, c='blue', label='train')
    plt.scatter(x_validation, y_validation,c='red',label='validation')
    plt.legend()
    plt.show()

Training and validation set
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Build the model
First, we create the placeholders for the input tensor (X) and the output tensor (Y):

    X = tf.placeholder(tf.float32, [None, 1], name="X")
    Y = tf.placeholder(tf.float32, [None, 1], name="Y")

Then we build the hidden layer of [1 x 10] dimensions:

  w_h = tf.Variable(tf.random_uniform([1, layer_1_neurons],\
                                       minval=-1, maxval=1, \
dtype=tf.float32))
  b_h = tf.Variable(tf.zeros([1, layer_1_neurons], \
                                dtype=tf.float32))

It receives the input value from the X input tensor, combined with the weight w_hij
connections and added with the respective biases of layer 1:

    h = tf.nn.sigmoid(tf.matmul(X, w_h) + b_h)

The output layer is a [10 x 1] tensor:

  w_o = tf.Variable(tf.random_uniform([layer_1_neurons, 1],\
                                 minval=-1, maxval=1,\
                                       dtype=tf.float32))
    b_o = tf.Variable(tf.zeros([1, 1], dtype=tf.float32))

Each neuron in this second layer receives inputs from the neurons of layer 1, combined with
weight w_oij connections and added together with the respective biases of the output
layer:

    model = tf.matmul(h, w_o) + b_o

We then define our optimizer for the newly defined model:

    train_op = tf.train.AdamOptimizer().minimize\
            (tf.nn.l2_loss(model - Y))

We also note that in this case, the cost function adopted is the following:

    tf.nn.l2_loss(model - Y)

The tf.nn.l2_loss function is a TensorFlow that computes half the L2 norm of a tensor
without the sqrt, that is, the output for the preceding function is as follows:

      output = sum((model - Y) ** 2) / 2

The tf.nn.l2_loss function can be a viable cost function for our example.
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Launch the session
Let's build the evaluation graph:

    sess = tf.Session()
    sess.run(tf.initialize_all_variables())

Now we can launch the learning session:

    errors = []
    for i in range(NUM_EPOCHS):
        for start, end in zip(range(0, len(x_training), batch_size),\
                              range(batch_size,\
                                    len(x_training), batch_size)):
            sess.run(train_op, feed_dict={X: x_training[start:end],\
                                          Y: y_training[start:end]})
        cost = sess.run(tf.nn.l2_loss(model - y_validation),\
                        feed_dict={X:x_validation})
        errors.append(cost)
        if i%100 == 0: print "epoch %d, cost = %g" % (i, cost)

Running this network for 1400 epochs, we'll see the error progressively reducing and
eventually converging:

Python 2.7.10 (default, Oct 14 2015, 16:09:02)  [GCC 5.2.1 20151010] on
linux2 Type "copyright", "credits" or "license()" for more information.
>>> ======================= RESTART ============================
>>>
epoch 0, cost = 55.9286
epoch 100, cost = 22.0084
epoch 200, cost = 18.033
epoch 300, cost = 14.0481
epoch 400, cost = 9.74721
epoch 500, cost = 5.83419
epoch 600, cost = 3.05434
epoch 700, cost = 1.53706
epoch 800, cost = 0.91719
epoch 900, cost = 0.726675
epoch 1000, cost = 0.668316
epoch 1100, cost = 0.633737
epoch 1200, cost = 0.608306
epoch 1300, cost = 0.590429
epoch 1400, cost = 0.574602
>>>
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The following lines of code allow us to display how the cost changes in the running epochs:

    plt.plot(errors,label='MLP Function Approximation')
    plt.xlabel('epochs')
    plt.ylabel('cost')
    plt.legend()
    plt.show()

Training phase in Multi Layer Perceptron
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Summary
In this chapter, we introduced artificial neural networks. An artificial neuron is a
mathematical model that to some extent mimics the properties of a living neurons. Each
neuron of the network has a very simple operation which consists of becoming active if the
total amount of signal that it receives exceeds a look at the activation threshold. The
learning process is typically supervised: the neural net uses a training set to infer the
relationship between the input and the corresponding output, while the learning algorithm
modifies the weights of the net in order to minimize a cost function that represents the forecast
error relating to the training set. If the training is successful, the neural net will be able to
make forecasts even where the output is not known a priori. In this chapter we
implemented, using TensorFlow, some examples involving neural networks. We have seen
neural nets used to solve classification and regressions problems as the logistic regression
algorithm in a classification problem using the Rosemblatt's Perceptron. At the end of the
chapter, we introduced the Multi Layer Perceptron architecture, which we have seen in action
prior to the implementation of an image classifier, then for a simulator of mathematical
functions.

In the next chapter, we finally introduce deep learning models; we will examine and
implement more complex neural network architectures, such as a convolutional neural
network and a recurrent neural network.



5
Deep Learning

In this chapter, we will cover the following topics:

Deep learning techniques
Convolutional neural network (CNN)

CNN architecture
TensorFlow implementation of a CNN

Recurrent neural network (RNN)
RNN architecture
Natural Language Processing with TensorFlow

Deep learning techniques
Deep learning techniques are a crucial step forward taken by the machine learning
researchers in recent decades, having provided successful results ever seen before in many
applications, such as image recognition and speech recognition.

There are several reasons that led to deep learning being developed and placed at the center
of attention in the scope of machine learning. One of these reasons is represented by the
progress in hardware, with the availability of new processors, such as graphics processing
units (GPUs), which have greatly reduced the time needed for training networks, lowering
them 10/20 times.
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Another reason is certainly the increasing ease of finding ever more numerous datasets on
which to train a system, needed to train architectures of a certain depth and with high
dimensionality of the input data. Deep learning consists of a set of methods that allow a
system to obtain a hierarchical representation of the data on multiple levels. This is achieved
by combining simple units (not linear), each of which transforms the representation at its
own level, starting from the input level, to a representation at a higher, level slightly more
abstract. With a sufficient number of these transformations, considerably complex input-
output functions can be learned.

With reference to a classification problem, for example, the highest levels of representation,
highlight the aspects of the input data that are relevant for the classification, suppressing
the ones that have no effect on the classification purposes.

Hierarchical feature extraction in an image classification system
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The preceding scheme describes the features of the image classification system (a face
recognizer): each block gradually extracts the features of the input image, going to process
data already pre-processed from the previous blocks, extracting increasingly
complex features of the input image, and thus building the hierarchical data representation
that characterizes a deep learning-based system.

A possible representation of the features of the hierarchy could be as follows:

     pixel --> edge --> texture --> motif --> part --> object

In a text recognition problem, however, the hierarchical representation can be structured as
follows:

    character --> word --> word group --> clause --> sentence --> story

A deep learning architecture is, therefore, a multi-level architecture, consisting of simple
units, all subject to training, many of which carry non-linear transformations. Each unit
transforms its input to improve its properties to select and amplify only the relevant aspects for
classification purposes, and its invariance, namely its propensity to ignore the irrelevant
aspects and negligible.

With multiple levels of non-linear transformations, therefore, with a depth approximately
between 5 and 20 levels, a deep learning system can learn and implement extremely
intricate and complex functions, simultaneously very sensitive to the smallest relevant
details, and extremely insensitive and indifferent to large variations of irrelevant aspects of
the input data which can be, in the case of object recognition: image's background,
brightness, or the position of the represented object.

The following sections will illustrate, with the aid of TensorFlow, two important types of
deep neural networks: the convolutional neural networks (CNNs), mainly addressed to the
classification problems, and then the recurrent neural networks (RNNs), targeting Natural
Language Processing (NLP) issues.

Convolutional neural networks
Convolutional neural networks (CNNs) are a particular type of neural network-oriented 
deep learning that have achieved excellent results in many practical applications, in
particular the object recognition in images.
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In fact, CNNs are designed to process data represented in the form of multiple arrays, for 
example, the color images, representable by means of three two-dimensional arrays
containing the pixel's color intensity. The substantial difference between CNNs and
ordinary neural networks is that the former operate directly on the images while the latter on
features extracted from them. The input of a CNN, therefore, unlike that of an ordinary
neural network, will be two-dimensional, and the features will be the pixels of the input
image.

The CNN is the dominant approach for almost all the problems of recognition. The
spectacular performance offered by networks of this type have in fact prompted the biggest
companies in technology, such as Google and Facebook, to invest in research and
development projects for networks of this kind, and to develop and distribute products
image recognition based on CNNs.

CNN architecture
The CNN use three basic ideas: local receptive fields, convolution, and pooling.

In convolutional networks, we consider input as something similar to what is shown in the
following figure:

Input neurons
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One of the concepts behind CNNs is local connectivity. CNNs, in fact, utilize spatial
correlations that may exist within the input data. Each neuron of the first subsequent layer 
connectsonly some of the input neurons. This region is called local receptive field. In the
following figure, it is represented by the black 5×5 square that converges to a hidden neuron:

From input to hidden neurons

The hidden neuron, of course, will only process the input data inside of its receptive field, not
realizing the changes outside of that. However, it is easy to see that, by superimposing
several layers, that are locally connected, leveling up you will have units that process more
and more global data compared to input, in accordance with the basic principle of deep
learning, to bring the performance to a level of abstraction that is always growing.

The reason for the local connectivity resides in the fact that in data of
arrays form, such as the images, the values are often highly correlated,
forming distinct groups of data that can be easily identified.

Each connection learns a weight (so it will get 5×5 = 25), instead of the hidden neuron with
an associated connecting learns a total bias, then we are going to connect the regions to
individual neurons by performing a shift from time to time, as in the following figures:
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The convolution operation

This operation is called convolution. Doing so, if we have an image of 28×28 inputs and 5×5
regions, we will get 24×24 neurons in the hidden layer. We said that each neuron has a bias
and 5×5 weights connected to the region: we will use these weights and biases for all 24×24
neurons. This means that all the neurons in the first hidden layer will recognize the same
features, just placed differently in the input image. For this reason, the map of connections
from the input layer to the hidden feature map is called shared weights and bias is called
shared bias, since they are in fact shared.
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Obviously, we need to recognize an image of more than a map of features, so a complete 
convolutional layer is made from multiple feature maps.

Multiple feature maps

In the preceding figure, we see three feature maps; of course, its number can increase in
practice and you can get to use convolutional layers with even 20 or 40 feature maps. A
great advantage in the sharing of weights and bias is the significant reduction of the
parameters involved in a convolutional network. Considering our example, for each feature
map we need 25 weights (5×5) and a bias (shared); that is 26 parameters in total. Assuming
we have 20 feature maps, we will have 520 parameters to be defined. With a fully connected
network, with 784 input neurons and, for example, 30 hidden layer neurons, we need 30
more 784×30 bias weights, reaching a total of 23.550 parameters.

The difference is evident. The convolutional networks also use pooling layers, which are
layers immediately positioned after the convolutional layers; these simplify the output
information of the previous layer to it (the convolution). It takes the input feature maps
coming out of the convolutional layer and prepares a condensed feature map. For example,
we can say that the pooling layer could be summed up, in all its units, in a 2×2 region of
neurons of the previous layer.
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This technique is called pooling and can be summarized with the following scheme:

The pooling operation helps to simplify the information from a layer to the next

Obviously, we usually have more features maps and we apply the maximum pooling to
each of them separately.

From the input layer to the second hidden layer

So we have three feature maps of size 24×24 for the first hidden layer, and the second
hidden layer will be of size 12×12, since we are assuming that for every unit summarize a
2×2 region.
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Combining these three ideas, we form a complete convolutional network. Its architecture
can be displayed as follows:

A CNNs architectural schema

Let's summarize: there are the 28×28 input neurons followed by a convolutional layer with a
local receptive field 5×5 and 3 feature maps. We obtain as a result of a hidden layer of
neurons 3x24x24. Then there is the max-pooling applied to 2×2 on the 3 regions of feature
maps getting a hidden layer 3x12x12. The last layer is fully connected: it connects all the
neurons of the max-pooling layer to all 10 output neurons, useful to recognize the
corresponding output.

This network will then be trained by gradient descent and the back propagation algorithm.

TensorFlow implementation of a CNN
In the following example, we will see in action the CNN in a problem of image
classification. We want to show the process of building a CNN network: what are the steps
to execute and what reasoning needs to be done to run a proper dimensioning of the entire
network, and of course how to implement it with TensorFlow.

Initialization step

Load and prepare the MNIST data:1.

    import tensorflow as tf
    import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
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Define all the CNN parameters:2.

    learning_rate = 0.001
    training_iters = 100000
    batch_size = 128
    display_step = 10

MNIST data input (each shape is of 28×28 array pixels):3.

    n_input = 784

The MNIST total classes (0-9 digits)4.

    n_classes = 10

To reduce the over fitting, we apply the dropout technique. This term refers to5.
dropping out units (hidden, input, and output) in a neural network. Deciding
which neurons to eliminate is random; one way is to apply a probability, as we
shall see in our code. For this reason, we define the following parameter (to be
tuned):

    dropout = 0.75

Define the placeholders for the input graph. The x placeholder contains the6.
MNIST data input (exactly 728 pixels):

    x = tf.placeholder(tf.float32, [None, n_input])

Then we change the form of 4D input images to a tensor, using the TensorFlow7.
reshape operator:

    _X = tf.reshape(x, shape=[-1, 28, 28, 1])

The second and third dimensions correspond to the width and height of the image, while
the latter dimension is the total number of color channels (in our case 1).
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So we can display our input image as a two-dimensional tensor, of size 28×28:

The input tensor for our problem

The output tensor will contain the output probability for each digit to classify:

    y = tf.placeholder(tf.float32, [None, n_classes]).

First convolutional layer
Each neuron of the hidden layer is connected to a small subset of the input tensor of
dimension 5×5. This implies that the hidden layer will have a 24×24 size. We also define and
initialize the tensors of shared weights and shared bias:

    wc1 = tf.Variable(tf.random_normal([5, 5, 1, 32]))
    bc1 = tf.Variable(tf.random_normal([32]))

Recall that in order to recognize an image, we need more than a map of features. The
number is just the number of feature maps we are considering for this first layer. In our
case, the convolutional layer is composed of 32 feature maps.

The next step is the construction of the first convolution layer, conv1:

    conv1 = conv2d(_X,wc1,bc1)

Here, conv2d is the following function:

    def conv2d(img, w, b):
      return tf.nn.relu(tf.nn.bias_add\
                        (tf.nn.conv2d(img, w,\
                                       strides=[1, 1, 1, 1],\
                                        padding='SAME'),b))
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For this purpose, we used the TensorFlow tf.nn.conv2d function. It computes a 2D
convolution from the input tensor and the shared weights. The result of this operation will be
then added to the biases bc1 matrix. For this purpose, we used the function tf.nn.conv2d
to compute a 2-D convolution from the input tensor and the tensor of shared weights. The
result of this operation will be then added to the biases bc1 matrix. While tf.nn.relu is
the Relu function (Rectified linear unit) that is the usual activation function in the hidden layer
of a deep neural network.

We will apply this activation function to the return value that we have with the convolution
function. The padding value is 'SAME' , which indicates that the output tensor output will
have the same size of input tensor.

One way to represent the convolutional layer, namely conv1, is as follows:

The first hidden layer

After the convolution operation, we impose the pooling step that simplifies the output
information of the previously created convolutional layer.

In our example, let's take a 2×2 region of the convolution layer and we will summarize the
information at each point in the pooling layer.

    conv1 = max_pool(conv1, k=2)
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Here, for the pooling operation, we have implemented the following function:

    def max_pool(img, k):
        return tf.nn.max_pool(img, \
                              ksize=[1, k, k, 1],\
                              strides=[1, k, k, 1],\
                              padding='SAME')

The tf.nn.max_pool function performs the max pooling on the input. Of course, we apply
the max pooling for each convolutional layer, and there will be many layers of pooling and
convolution. At the end of the pooling phase, we'll have 12x12x32 convolutional hidden layers.

The next figure shows the CNNs layers after the pooling and convolution operation:

The CNNs after a first convolution and pooling operations

The last operation is to reduce the overfitting by applying the tf.nn.dropout TensorFlow
operators on the convolutional layer. To do this, we create a placeholder for the probability
(keep_prob) that a neuron's output is kept during the dropout:

    keep_prob = tf. placeholder(tf.float32)
    conv1 = tf.nn.dropout(conv1,keep_prob)



Deep Learning

[ 137 ]

Second convolutional layer
For the second hidden layer, we must apply the same operations as the first layer, and so we
define and initialize the tensors of shared weights and shared bias:

    wc2 = tf.Variable(tf.random_normal([5, 5, 32, 64]))
    bc2 = tf.Variable(tf.random_normal([64]))

As you can note, this second hidden layer will have 64 features for a 5×5 window, while the
number of input layers will be given from the first convolutional obtained layer. We next
apply a second layer to the convolutional conv1 tensor, but this time we apply 64 sets of
5×5 filters each to the 32 conv1 layers:

    conv2 = conv2d(conv1,wc2,bc2)

It give us 64 14×14 arrays which we reduce with max pooling to 64 7×7 arrays:

    conv2 = max_pool(conv2, k=2)

Finally, we again use the dropout operation:

    conv2 = tf.nn.dropout(conv2, keep_prob)

The resulting layer is a 7×7 x 64 convolution tensor because we started from the input tensor
12×12 and a sliding window of 5×5, considering that has a stride of 1.

Building the second hidden layer
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Densely connected layer
In this step, we build a densely connected layer that we use to process the entire image. The
weight and bias tensors are as follows:

    wd1 = tf.Variable(tf.random_normal([7*7*64, 1024]))
    bd1 = tf.Variable(tf.random_normal([1024]))

As you can note, this layer will be formed by 1024 neurons.

Then we reshape the tensor from the second convolutional layer into a batch of vectors:

    dense1 = tf.reshape(conv2, [-1, wd1.get_shape().as_list()[0]])

Multiply this tensor by the weight matrix, wd1, add the tensor bias, bd1, and apply a RELU
operation:

    dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, wd1),bd1))

We complete this layer by again using the dropout operator:

    dense1 = tf.nn.dropout(dense1, keep_prob)

Readout layer
The last layer defines the tensors wout and bout:

    wout = tf.Variable(tf.random_normal([1024, n_classes]))
    bout = tf.Variable(tf.random_normal([n_classes]))

Before applying the softmax function, we must calculate the evidence that the image
belongs to a certain class:

    pred = tf.add(tf.matmul(dense1, wout), bout)

Testing and training the model
The evidence must be converted into probabilities for each of the 10 possible classes (the 
method is identical to what we saw in Chapter 4, Introducing Neural Networks). So we
define the cost function, which evaluates the quality of our model, by applying the softmax
function:

    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
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And its function optimization, using the TensorFlow AdamOptimizer function:

    optimizer =
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

The following tensor will serve in the evaluation phase of the model:

    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

Launching the session
Initialize the variables:

    init = tf.initialize_all_variables()

Build the evaluation graph:

    with tf.Session() as sess:
        sess.run(init)
        step = 1

Let's train the net until training_iters:

        while step * batch_size < training_iters:
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)

Fit training using the batch data:

        sess.run(optimizer, feed_dict={x: batch_xs,\
                                        y: batch_ys,\
                                        keep_prob:  dropout})
            if step % display_step == 0:

Calculate the accuracy:

        acc = sess.run(accuracy, feed_dict={x: batch_xs,\
                                             y: batch_ys,\
                                             keep_prob: 1.})

Calculate the loss:

             loss = sess.run(cost, feed_dict={x: batch_xs,\
                                               y: batch_ys,\
                                              keep_prob: 1.})
                print "Iter " + str(step*batch_size) +\
                      ", Minibatch Loss= " + \
                      "{:.6f}".format(loss) + \
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                      ", Training Accuracy= " + \
                      "{:.5f}".format(acc)
            step += 1
        print "Optimization Finished!"

We print the accuracy for the 256 MNIST test images:

    print "Testing Accuracy:",\
               sess.run(accuracy,\
                    feed_dict={x: mnist.test.images[:256], \
                               y: mnist.test.labels[:256],\
                                  keep_prob: 1.})

Running the code, we have the following output:

Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
Iter 1280, Minibatch Loss= 27900.769531,
Training Accuracy= 0.17188
Iter 2560, Minibatch Loss= 17168.949219, Training Accuracy= 0.21094
Iter 3840, Minibatch Loss= 15000.724609, Training Accuracy= 0.41406
Iter 5120, Minibatch Loss= 8000.896484, Training Accuracy= 0.49219
Iter 6400, Minibatch Loss= 4587.275391, Training Accuracy= 0.61719
Iter 7680, Minibatch Loss= 5949.988281, Training Accuracy= 0.69531
Iter 8960, Minibatch Loss= 4932.690430, Training Accuracy= 0.70312
Iter 10240, Minibatch Loss= 5066.223633, Training Accuracy= 0.70312 . . . .
. . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . . . . .
Iter 81920, Minibatch Loss= 442.895020, Training Accuracy= 0.93750
Iter 83200, Minibatch Loss= 273.936676, Training Accuracy= 0.93750
Iter 84480, Minibatch Loss= 1169.810303, Training Accuracy= 0.89062
Iter 85760, Minibatch Loss= 737.561157, Training Accuracy= 0.90625
Iter 87040, Minibatch Loss= 583.576965, Training Accuracy= 0.89844
Iter 88320, Minibatch Loss= 375.274475, Training Accuracy= 0.93750
Iter 89600, Minibatch Loss= 183.815613, Training Accuracy= 0.94531
Iter 90880, Minibatch Loss= 410.157867, Training Accuracy= 0.89844
Iter 92160, Minibatch Loss= 895.187683, Training Accuracy= 0.84375
Iter 93440, Minibatch Loss= 819.893555, Training Accuracy= 0.89062
Iter 94720, Minibatch Loss= 460.179779, Training Accuracy= 0.90625
Iter 96000, Minibatch Loss= 514.344482, Training Accuracy= 0.87500
Iter 97280, Minibatch Loss= 507.836975, Training Accuracy= 0.89844
Iter 98560, Minibatch Loss= 353.565735, Training Accuracy= 0.92188
Iter 99840, Minibatch Loss= 195.138626, Training Accuracy= 0.93750
Optimization Finished!
Testing Accuracy: 0.921875
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It provides an accuracy of about 99.2%. Obviously, it does not represent the state of the art,
because the purpose of the example is to just see how to build a CNN. The model can be
further refined to give better results.

Source code
    # Import MINST data
    import input_data
    mnist = input_data.read_data_sets("/tmp/data/",one_hot=True)
    import tensorflow as tf
    # Parameters
    learning_rate = 0.001
    training_iters = 100000
    batch_size = 128
    display_step = 10
    # Network Parameters
    n_input = 784 # MNIST data input (img shape: 28*28)
    n_classes = 10 # MNIST total classes (0-9 digits)
    dropout = 0.75 # Dropout, probability to keep units
    # tf Graph input
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_classes])
    #dropout (keep probability)
    keep_prob = tf.placeholder(tf.float32)
    # Create model
    def conv2d(img, w, b):
        return tf.nn.relu(tf.nn.bias_add\
                          (tf.nn.conv2d(img, w,\
                                        strides=[1, 1, 1, 1],\
                                        padding='SAME'),b))
    def max_pool(img, k):
        return tf.nn.max_pool(img, \
                              ksize=[1, k, k, 1],\
                              strides=[1, k, k, 1],\
                              padding='SAME')
    # Store layers weight & bias
    # 5x5 conv, 1 input, 32 outputs
    wc1 = tf.Variable(tf.random_normal([5, 5, 1, 32]))
    bc1 = tf.Variable(tf.random_normal([32]))
    # 5x5 conv, 32 inputs, 64 outputs
    wc2 = tf.Variable(tf.random_normal([5, 5, 32, 64]))
    bc2 = tf.Variable(tf.random_normal([64]))
    # fully connected, 7*7*64 inputs, 1024 outputs
    wd1 = tf.Variable(tf.random_normal([7*7*64, 1024]))
    # 1024 inputs, 10 outputs (class prediction)
    wout = tf.Variable(tf.random_normal([1024, n_classes]))
    bd1 = tf.Variable(tf.random_normal([1024]))
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    bout = tf.Variable(tf.random_normal([n_classes]))
    # Construct model
    _X = tf.reshape(x, shape=[-1, 28, 28, 1])
    # Convolution Layer
    conv1 = conv2d(_X,wc1,bc1)
    # Max Pooling (down-sampling)
    conv1 = max_pool(conv1, k=2)
    # Apply Dropout
    conv1 = tf.nn.dropout(conv1,keep_prob)
    # Convolution Layer
    conv2 = conv2d(conv1,wc2,bc2)
    # Max Pooling (down-sampling)
    conv2 = max_pool(conv2, k=2)
    # Apply Dropout
    conv2 = tf.nn.dropout(conv2, keep_prob)
    # Fully connected layer
    # Reshape conv2 output to fit dense layer input
    dense1 = tf.reshape(conv2, [-1, wd1.get_shape().as_list()[0]])
    # Relu activation
    dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, wd1),bd1))
    # Apply Dropout
    dense1 = tf.nn.dropout(dense1, keep_prob)
    # Output, class prediction
    pred = tf.add(tf.matmul(dense1, wout), bout)
    # Define loss and optimizer
    cost = tf.reduce_mean\
    (tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer =\
          tf.train.AdamOptimizer\
    (learning_rate=learning_rate).minimize(cost)
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    # Initializing the variables
    init = tf.initialize_all_variables()
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # Fit training using batch data
            sess.run(optimizer, feed_dict={x: batch_xs,\
                                           y: batch_ys,\
                                           keep_prob: dropout})
            if step % display_step == 0:
                # Calculate batch accuracy
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                acc = sess.run(accuracy, feed_dict={x: batch_xs,\
                                                    y: batch_ys,\
                                                    keep_prob: 1.})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_xs,\
                                                 y: batch_ys,\
                                                 keep_prob: 1.})
                print "Iter " + str(step*batch_size) +\
                      ", Minibatch Loss= " + \
                      "{:.6f}".format(loss) + \
                      ", Training Accuracy= " + \
                      "{:.5f}".format(acc)
            step += 1
        print "Optimization Finished!"
        # Calculate accuracy for 256 mnist test images
        print "Testing Accuracy:",\
              sess.run(accuracy,\
                       feed_dict={x: mnist.test.images[:256], \
                                  y: mnist.test.labels[:256],\
                                  keep_prob: 1.})

Recurrent neural networks
Another deep learning-oriented architecture is that of the so-called recurrent neural
networks (RNNs). The basic idea of RNNs is to make use of the sequential information type
in the input. In neural networks, we typically assume that each input and output is
independent from all the others. For many types of problems, however, this assumption
does not result to be positive. For example, if you want to predict the next word of a phrase,
it is certainly important to know those that precede it. These neural nets are called recurrent
because they perform the same computations for all elements of a sequence of inputs, and
the output each element depends, in addition to the current input, on all previous
computations.
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RNN architecture
RNNs process a sequential input item at a time, maintaining a sort of updated state vector
that contains information about all past elements of the sequence. In general, an RNN has a
shape of the following type:

RNN architecture schema

The preceding figure shows the aspect of an RNN, with its unfolded version, explaining the
network structure for the whole sequence of inputs, at each instant of time. It becomes clear
that, differently from the typical multi-level neural networks, which use several parameters
at each level, an RNN always uses the same parameters, denominated U, V, and W (see the
previous figure). Furthermore, an RNN performs the same computation at each instant, on
multiple of the same sequence in input. Sharing the same parameters, it strongly reduces the
number of parameters that the network must learn during the training phase, thus also
improving the training time.
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It is also evident how you can train networks of this type, in fact, because the parameters
are shared for each instant of time, the gradient calculated for each output depends not only
from the current computation but also from the previous ones. For example, to calculate the
gradient at time t = 4, it is necessary to back propagate the gradient for the three previous
instants of time and then sum the gradients thus obtained. Also, the entire input sequence is
typically considered to be a single element of the training set.

However, the training of this type of network suffers from the so-called vanishing/exploding
gradient problem; the gradients, computed and back propagated, tend to increase or decrease
at each instant of time and then, after a certain number of instants of time, diverge to infinity
or converge to zero.

Let us now examine how an RNN operates. Xt; is the network input at instant t, which could
be, for example, a vector that represents a word of a sentence, while St; is the state vector of the
net. It can be considered a sort of memory of the system which contains information on all
the previous elements of the input sequence. The state vector at instant t is evaluated
starting from the current input (time t) and the status evaluated at the previous instant (time
t-1) through the U and W parameters:

St = f ([U] Xt  + [W] St-1)

The function f is a non linear function such as rectified linear unit (ReLu), while Ot; is the
output at instant t, calculated using the parameter V.

The output will depend on the type of problem for the which the network is used. For
example, if you want to predict the next word of a sentence, it could be a probability vector
with respect to each word in the vocabulary of the system.
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LSTM networks
Long Shared Term Memory (LSTM) networks are an extension of the basic model of RNN
architectures. The main idea is to improve the network, providing it with an explicit
memory. The LSTM networks, in fact, despite not having an essentially different
architecture from RNN, are equipped with special hidden units, called memory cells, the
behavior of which is to remember the previous input for a long time.

A LSTM) unit

The LSTM unit has three gates and four input weights, xt (from the data to the input and
three gates), while ht is the output of the unit.
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A LSTM block contains gates that determine whether an input is significant enough to be 
saved. This block is formed by four units:

Input gate: Allows the value input in the structure
Forget gate: Goes to eliminate the values contained in the structure
Output gate: Determines when the unit will output the values trapped in
structure
Cell: Enables or disables the memory cell

In the next example, we will see a TensorFlow implementation of a LSTM network in a
language processing problem.

NLP with TensorFlow
RNNs have proved to have excellent performance in problems such as predicting the next
character in a text or, similarly, the prediction of the next sequence word in a sentence.
However, they are also used for more complex problems, such as Machine Translation. In
this case, the network will have as input a sequence of words in a source language, while
you want to output the corresponding sequence of words in a language target. Finally,
another application of great importance in which RNNs are widely used is that of
speech recognition. In the following, we will develop a computational model that can predict
the next word in a text based on the sequence of the preceding words. To measure the
accuracy of the model, we will use the Penn Tree Bank (PTB) dataset, which is the
benchmark used to measure the precision of these models.

This example refers to the files that you find in the  /rnn/ptb  directory of your 
TensorFlow distribution. It comprises of the following two files:

ptb_word_lm.py: The queues to train a language model on the PTB dataset
reader.py: The code to read the dataset

Unlike previous examples, we will present only the pseudocode of the procedure
implemented, in order to understand the main ideas behind the construction of the model,
without getting bogged down in unnecessary implementation details. The source code is
quite long, and an explanation of the code line by line would be too cumbersome.

See h t t p s : / / w w w . t e n s o r f l o w . o r g / v e r s i o n s / r 0 . 8 / t u t o r i a l s / r e c
u r r e n t / i n d e x . h t m l for other references.

https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html
https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html
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Download the data
You can download the data from the web page h t t p : / / w w w . f i t . v u t b r . c z / ~ i m i k o l o v /
r n n l m / s i m p l e - e x a m p l e s . t g z and then extract the data folder. The dataset is
preprocessed and contains 10000, different words, including the end-of-sentence marker
and a special symbol (<unk>) for rare words. We convert all of them in reader.py to
unique integer identifiers to make it easy for the neural network to process.

To extract a .tgz file with tar, you need to use the following:

  tar -xvzf /path/to/yourfile.tgz

Building the model
This model implements an architecture of the RNN using the LSTM. In fact, it plans to
increase the architecture of the RNN by including storage units that allow saving
information regarding long-term temporal dependencies.

The TensorFlow library allows you to create a LSTM through the following command:

    lstm = rnn_cell.BasicLSTMCell(size)

Here size should be the number of units to be used LSTM. The LSTM memory is
initialized to zero:

    state = tf.zeros([batch_size, lstm.state_size])

In the course of computation, after each word to examine the state value is updated with the
output value, following is the pseudocode list of the implemented steps:

    loss = 0.0
    for current_batch_of_words in words_in_dataset:
           output, state = lstm(current_batch_of_words, state)

output is then used to make predictions on the prediction of the next word:

          logits = tf.matmul(output, softmax_w) + softmax_b
           probabilities = tf.nn.softmax(logits)
           loss += loss_function(probabilities, target_words)

The loss function minimizes the average negative log probability of the target words, it is
the TensorFow function:

    tf.nn.seq2seq.sequence_loss_by_example

http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
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It computes the average per-word perplexity, its value measures the accuracy of the model
(to lower values correspond best performance) and will be monitored throughout the
training process.

Running the code
The model implemented supports three types of configurations: small, medium, and
large. The difference between them is in size of the LSTMs and the set of hyper parameters
used for training. The larger the model, the better results it should get. The small model
should be able to reach perplexity below 120 on the test set and the large one below 80,
though it might take several hours to train.

To execute the model simply type the following:

    python ptb_word_lm --data_path=/tmp/simple-examples/data/ --model small

In /tmp/simple-examples/data/, you must have downloaded the data from the PTB
dataset.

The following list shows the run after 8 hours of training (13 epochs for a small
configuration):

    Epoch: 1 Learning rate: 1.000
    0.004 perplexity: 5263.762 speed: 391 wps
    0.104 perplexity: 837.607 speed: 429 wps
    0.204 perplexity: 617.207 speed: 442 wps
    0.304 perplexity: 498.160 speed: 438 wps
    0.404 perplexity: 430.516 speed: 436 wps
    0.504 perplexity: 386.339 speed: 427 wps
    0.604 perplexity: 348.393 speed: 431 wps
    0.703 perplexity: 322.351 speed: 432 wps
    0.803 perplexity: 301.630 speed: 431 wps
    0.903 perplexity: 282.417 speed: 434 wps
    Epoch: 1 Train Perplexity: 268.124
    Epoch: 1 Valid Perplexity: 180.210
    Epoch: 2 Learning rate: 1.000
    0.004 perplexity: 209.082 speed: 448 wps
    0.104 perplexity: 150.589 speed: 437 wps
    0.204 perplexity: 157.965 speed: 436 wps
    0.304 perplexity: 152.896 speed: 453 wps
    0.404 perplexity: 150.299 speed: 458 wps
    0.504 perplexity: 147.984 speed: 462 wps
    0.604 perplexity: 143.367 speed: 462 wps
    0.703 perplexity: 141.246 speed: 446 wps
    0.803 perplexity: 139.299 speed: 436 wps
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    0.903 perplexity: 135.632 speed: 435 wps
    Epoch: 2 Train Perplexity: 133.576
    Epoch: 2 Valid Perplexity: 143.072
    ............................................................
    Epoch: 12 Learning rate: 0.008
    0.004 perplexity: 57.011 speed: 347 wps
    0.104 perplexity: 41.305 speed: 356 wps
    0.204 perplexity: 45.136 speed: 356 wps
    0.304 perplexity: 43.386 speed: 357 wps
    0.404 perplexity: 42.624 speed: 358 wps
    0.504 perplexity: 41.980 speed: 358 wps
    0.604 perplexity: 40.549 speed: 357 wps
    0.703 perplexity: 39.943 speed: 357 wps
    0.803 perplexity: 39.287 speed: 358 wps
    0.903 perplexity: 37.949 speed: 359 wps
    Epoch: 12 Train Perplexity: 37.125
    Epoch: 12 Valid Perplexity: 123.571
    Epoch: 13 Learning rate: 0.004
    0.004 perplexity: 56.576 speed: 365 wps
    0.104 perplexity: 40.989 speed: 358 wps
    0.204 perplexity: 44.809 speed: 358 wps
    0.304 perplexity: 43.082 speed: 356 wps
    0.404 perplexity: 42.332 speed: 356 wps
    0.504 perplexity: 41.694 speed: 356 wps
    0.604 perplexity: 40.275 speed: 357 wps
    0.703 perplexity: 39.673 speed: 356 wps
    0.803 perplexity: 39.021 speed: 356 wps
    0.903 perplexity: 37.690 speed: 356 wps
    Epoch: 13 Train Perplexity: 36.869
    Epoch: 13 Valid Perplexity: 123.358
    Test Perplexity: 117.171

As you can see, the perplexity became lower after each epoch.
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Summary
In this chapter, we gave an overview of deep learning techniques, examining two of the
deep learning architectures in use, CNN and RNNs. Through the TensorFlow library, we
developed a convolutional neural network architecture for image classification problem.
The last part of the chapter was devoted to RNNs, where we described the TensorFlow's
tutorial for RNNs, where a LSTM network is built to predict the next word in an English
sentence.

The next chapter shows the TensorFlow facilities for GPU computing and introduces
TensorFlow serving, a high performance, open source serving system for machine learning
models, designed for production environments and optimized for TensorFlow.

https://www.tensorflow.org/


6
GPU Programming and Serving

with TensorFlow
In this chapter, we will cover the following topics:

GPU programming
TensorFlow Serving:

How to install TensorFlow Serving
How to use TensorFlow Serving
How to load and export a TensorFlow model

GPU programming
In Chapter 5, Deep Learning, where we trained a recurrent neural network (RNN) for an
NLP application, we could see that deep learning applications can be computationally
intensive. However, you can reduce the training time by using parallel programming
techniques through a graphic processing unit (GPU). In fact, the computational resources
of modern graphics units make them able to perform parallel code portions, ensuring high
performance.

The GPU programming model is a programming strategy that consists of replacing a CPU
to a GPU to accelerate the execution of a variety of applications. The range of applications of
this strategy is very large and is growing day by day; the GPUs, currently, are able to
reduce the execution time of applications across different platforms, from cars to mobile
phones, and from tablets to drones and robots.
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The following diagram shows how the GPU programming model works. In the application,
there are calls to tell the CPU to give away specific part of the code GPU and let it run to get
high execution speed. The reason for such specific part to rely on two GPU is up to the
speed provided by the GPU architecture. GPU has many Streaming Multiprocessors
(SMPs), with each having many computational cores. These cores are capable of performing
ALU and other operations with the help of Single Instruction Multiple Thread (SIMT)
calls, which reduce the execution time drastically.

In the GPU programming model there are pieces of code that are executed sequentially in the CPU, and some parts are executed in parallel by the GPU

TensorFlow possesses capabilities that you can take advantage of this programming model
(if you have a NVIDIA GPU), the package version that supports GPU requires Cuda Toolkit
7.0 and 6.5 CUDNN V2.
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For the installation of Cuda environment, we suggest referring the Cuda
installation page: h t t p : / / d o c s . n v i d i a . c o m / c u d a / c u d a - g e t t i n g - s t a
r t e d - g u i d e - f o r - l i n u x / # a x z z 4 9 w 1 X v z N j

TensorFlow refers to these devices in the following way:

/cpu:0: To reference the server CPU
/gpu:0: The GPU server if there is only one
/gpu:1: The second GPU server and so on

To find out which device is assigned to our operations and tensioners need to create the
session with the option of setting log_device_placement instantiated to True.

Consider the following example.

We create a computational graph; a and b will be two matrices:

    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')

In c we put the matrix multiplication of these two input tensors:

    c = tf.matmul(a, b)

Then we build a session with log_device_placement set to True:

    sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Finally, we launch the session:

    print sess.run(c)

You should see the following output:

    Device mapping:
    /job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c,
pci bus
    id: 0000:05:00.0
    b: /job:localhost/replica:0/task:0/gpu:0
    a: /job:localhost/replica:0/task:0/gpu:0
    MatMul: /job:localhost/replica:0/task:0/gpu:0
    [[ 22.  28.]
     [ 49.  64.]]

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/#axzz49w1XvzNj
http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/#axzz49w1XvzNj
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If you would like a particular operation to run on a device of your choice instead of what's
automatically selected for you, you can use tf.device to create a device context, so that all
the operations within that context will have the same device assignment.

Let's create the same computational graph using the tf.device instruction:

with tf.device('/cpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)

Again, we build the session graph and launch it:

    sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
    print sess.run(c)

You will see that now a and b are assigned to cpu:0:

    Device mapping:
    /job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c,
pci bus
    id: 0000:05:00.0
    b: /job:localhost/replica:0/task:0/cpu:0
    a: /job:localhost/replica:0/task:0/cpu:0
    MatMul: /job:localhost/replica:0/task:0/gpu:0
    [[ 22.  28.]
     [ 49.  64.]]

If you have more than a GPU, you can directly select it setting allow_soft_placement to
True in the configuration option when creating the session.

TensorFlow Serving
Serving is a TensorFlow package that has been developed to take machine learning models
into production systems. It means that a developer can use TensorFlow Serving's API to
build a server to serve the implemented model.

The served model will be able to make inferences and predictions each time on data
presented by its clients, allowing to improve the model.

To communicate with the serving system, the clients use a high performance open source 
remote procedure call (RPC) interface developed by Google, called gRPC.
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The typical pipeline (see the following figure) is that training data is fed to the learner,
which outputs a model. After being validated, it is ready to be deployed to the TensorFlow
serving system. It is quite common to launch and iterate on our model over time, as new
data becomes available, or as you improve the model.

TensorFlow Serving pipeline
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How to install TensorFlow Serving
To compile and use TensorFlow Serving, you need to set up some prerequisites.

Bazel
TensorFlow Serving requires Bazel 0.2.0 (h t t p : / / w w w . b a z e l . i o /) or higher. Download
bazel-0.2.0-installer-linux-x86_64.sh.

Bazel is a tool that automates software builds and tests. Supported build
tasks include running compilers and linkers to produce executable
programs and libraries, and assembling deployable packages.

Run the following commands:

    chmod +x bazel-0.2.0-installer-linux-x86_64.sh
    ./bazel-0.2.0-installer-linux-x86_64.sh -user

Finally, set up your environment. Export this in your ~/.bashrc directory:

    export PATH="$PATH:$HOME/bin"

gRPC
Our tutorials use gRPC (0.13 or higher) as our RPC framework.

You can find other references at h t t p s : / / g i t h u b . c o m / g r p c.

TensorFlow serving dependencies
To install TensorFlow serving dependencies, execute the following:

    sudo apt-get update && sudo apt-get install -y \
            build-essential \
            curl \
            git \
            libfreetype6-dev \
            libpng12-dev \
            libzmq3-dev \
            pkg-config \

http://www.bazel.io/
https://github.com/grpc
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            python-dev \
            python-numpy \
            python-pip \
            software-properties-common \
            swig \
            zip \
            zlib1g-dev

Then configure TensorFlow, by running the following command:

    cd tensorflow
    ./configure
    cd ..

Install Serving
Use Git to clone the repository:

    git clone --recurse-submodules
    https://github.com/tensorflow/serving
    cd serving

The --recurse-submodules option is required to fetch TensorFlow, gRPC, and other
libraries that TensorFlow serving depends on. To build TensorFlow, you must use Bazel:

    bazel build tensorflow_serving/

The binaries will be placed in the bazel-bin directory, and can be run using the
following command:

    /bazel-bin/tensorflow_serving/example/mnist_inference

Finally, you can test the installation by executing the following command:

    bazel test tensorflow_serving/
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How to use TensorFlow Serving
In this tutorial, we will show how to export a trained TensorFlow model and build a server to
serve the exported model. The implemented model is a Softmax Regression model for
handwritten image classification (MNIST data).

The code will consist of two parts:

A Python file (mnist_export.py) that trains and exports the model
A C++ file (mnist_inference.cc) that loads the exported model and runs a
gRPC service to serve it

In the following sections, we report the basic steps to use TensorFlow Serving. For other
references, you can view h t t p s : / / t e n s o r f l o w . g i t h u b . i o / s e r v i n g / s e r v i n g _ b a s i c.

Training and exporting the TensorFlow model
As you can see in mnist_export.py, the training is done the same way as in the MNIST.
For a beginners tutorial, refer the following link:

h t t p s : / / w w w . t e n s o r f l o w . o r g / v e r s i o n s / r 0 . 9 / t u t o r i a l s / m n i s t / b e g i n n e r s / i n d e
x . h t m l

The TensorFlow graph is launched in TensorFlow session sess, with the input tensor
(image) as x and the output tensor (Softmax score) as y. Then we use the TensorFlow
serving exporter to export the model; it builds a snapshot of the trained model so that it can
be loaded later for inference. Let's now see the main function to use to export a trained
model.

Import the exporter to serialize the model:

    from tensorflow_serving.session_bundle import exporter

Then you must define saver using the TensorFlow function tf.train.Saver. It has the
sharded parameter equal to True:

    saver = tf.train.Saver(sharded=True)

saver is used to serialize graph variable values to the model export so that they can be
properly restored later.

https://tensorflow.github.io/serving/serving_basic
https://www.tensorflow.org/versions/r0.9/tutorials/mnist/beginners/index.html
https://www.tensorflow.org/versions/r0.9/tutorials/mnist/beginners/index.html
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The next step is to define model_exporter:

    model_exporter = exporter.Exporter(saver)
    signature = exporter.classification_signature\
                         (input_tensor=x, scores_tensor=y)
    model_exporter.init(sess.graph.as_graph_def(),
                        default_graph_signature=signature)

model_exporter takes the following two arguments:

sess.graph.as_graph_def() is the protobuf of the graph. Exporting will
serialize the protobuf to the model export so that the TensorFlow graph can be 
properly restored later.
default_graph_signature=signature specifies a model export signature.
The signature specifies what type of model is being exported, and the
input/output tensors to bind to when running inference. In this case, you use
exporter.classification_signature to specify that the model is a
classification model.

Finally, we create our export:

    model_exporter.export(export_path,tf.constant\
                                   (FLAGS.export_version), sess)

model_exporter.export takes the following arguments:

export_path is the path of the export directory. Export will create the directory
if it does not exist.
tf.constant(FLAGS.export_version) is a tensor that specifies the version of
the model. You should specify a larger integer value when exporting a newer
version of the same model. Each version will be exported to a different sub-
directory under the given path.
sess is the TensorFlow session that holds the trained model you are exporting.

Running a session
To export the model, first clear the export directory:

    $>rm -rf /tmp/mnist_model

Then, using bazel, build the mnist_export example:

    $>bazel build //tensorflow_serving/example:mnist_export



GPU Programming and Serving with TensorFlow

[ 161 ]

Finally, you can run the following example:

    $>bazel-bin/tensorflow_serving/example/mnist_export /tmp/mnist_model
    Training model...
    Done training!
    Exporting trained model to /tmp/mnist_model
    Done exporting!

Looking in the export directory, we should have a sub-directory for exporting each version
of the model:

    $>ls /tmp/mnist_model
    00000001

The corresponding sub-directory has the default value of 1, because we specified
tf.constant(FLAGS.export_version) as the model version earlier, and
FLAGS.export_version has the default value of 1.

Each version of sub-directory contains the following files:

export.meta is the serialized tensorflow::MetaGraphDef of the model. It
includes the graph definition of the model, as well as metadata of the model, such
as signatures.
export-?????-of-????? are files that hold the serialized variables of the
graph.

    $>ls /tmp/mnist_model/00000001
    checkpoint export-00000-of-00001 export.meta

Loading and exporting a TensorFlow model
The C++ code for loading the exported TensorFlow model is in the main() function in
mnist_inference.cc. Here we report an excerpt; we do not consider the parameters for
batching. If you want to adjust the maximum batch size, timeout threshold, or the number
of background threads used for batched inference, you can do so by setting more values in
BatchingParameters:

    int main(int argc, char** argv)
    {
      SessionBundleConfig session_bundle_config;
              . . . Here batching parameters
      std::unique_ptr<SessionBundleFactory> bundle_factory;
      TF_QCHECK_OK(
          SessionBundleFactory::Create(session_bundle_config,
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                                           &bundle_factory));
          std::unique_ptr<SessionBundle> bundle(new SessionBundle);
          TF_QCHECK_OK(bundle_factory->CreateSessionBundle(bundle_path,
                                                              &bundle));
          ......
          RunServer(FLAGS_port, std::move(bundle));
          return 0;
    }

SessionBundle is a component of TensorFlow Serving. Let's consider the include file
SessionBundle.h:

    struct SessionBundle {
      std::unique_ptr<tensorflow::Session> session;
      tensorflow::MetaGraphDef meta_graph_def;
    };

The session parameter is a TensorFlow session that has the original graph with the
necessary variables properly restored.

SessionBundleFactory::CreateSessionBundle() loads the exported TensorFlow
model from bundle_path and creates a SessionBundle object for running inference with
the model.

RunServer brings up a gRPC server that exports a single Classify() API.

Each inference request will be processed in the following steps:

Verify the input. The server expects exactly one MNIST-format image for each1.
inference request.
Transform input to inference input tensor and create output tensor placeholder.2.
Run inference.3.

To run an inference, you must type the following command:

    $>bazel build //tensorflow_serving/example:mnist_inference
    $>bazel-bin/tensorflow_serving/example/mnist_inference --port=9000
/tmp/mnist_model/00000001
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Test the server
To test the server, we use the mnist_client.py (h t t p s : / / g i t h u b . c o m / t e n s o r f l o w / s e
r v i n g / b l o b / m a s t e r / t e n s o r f l o w _ s e r v i n g / e x a m p l e / m n i s t _ c l i e n t . p y) utility.

This client downloads MNIST test data, sends it as requests to the server, and calculates the
inference error rate.

To run it, type the following command:

    $>bazel build //tensorflow_serving/example:mnist_client
    $>bazel-bin/tensorflow_serving/example/mnist_client --num_tests=1000
    --server=localhost:9000
    Inference error rate: 10.5%

The result confirms that the server loads and runs the trained model successfully. In fact, a
10.5% inference error rate for 1,000 images gives us 91% accuracy for the trained Softmax
model.

Summary
We described two important features of TensorFlow in this chapter. First was the possibility
of using the programming model known as GPU computing, with which it becomes possible
to speed up the code (for example, the training phase of a neural network). The second part
of the chapter was devoted to describing the framework TensorFlow Serving. It is a high
performance, open source serving system for machine learning models, designed for
production environments and optimized for TensorFlow. This powerful framework can run
multiple models at large scale that change over time, based on real-world data, enabling a
more efficient use of GPU resources and allowing the developer to improve their own
machine learning models.

https://github.com/tensorflow/serving/blob/master/tensorflow_serving/example/mnist_client.py
https://github.com/tensorflow/serving/blob/master/tensorflow_serving/example/mnist_client.py
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